MCP ExplorerExplorer

Agentix

@AP3X-Devon 19 days ago
1 MIT
FreeCommunity
AI Systems
#agentic-ai#agentic-framework#agents#ai#artificial-intelligence#graphiti#knowledge-graph#llm#mcp#python#rag#temporal#model-context-protocol
Agentix is a Python framework for building AI agents

Overview

What is Agentix

AGENTIX is a Python framework designed for building AI agents with a focus on progressive disclosure, allowing users to start with simple configurations and scale to complex enterprise-level systems.

Use cases

Use cases for AGENTIX include building chatbots, automating workflows, integrating with other AI models like Anthropic Claude, and developing multi-agent systems for complex tasks.

How to use

To use AGENTIX, install it via pip, set up your environment, and create agents using simple commands or structured configurations in YAML/JSON format.

Key features

Key features include zero-configuration agent creation, configuration-based development, a graph-based architecture for full control, and enterprise readiness for deployment and monitoring.

Where to use

AGENTIX can be used in various fields such as software development, AI research, customer service automation, and any domain requiring intelligent agent deployment.

Content

🚀 Agentix - FastAPI for AI Agents

Build production-ready AI agents with progressive disclosure

Python 3.8+
License: MIT
Code style: black
GitHub issues
GitHub stars
GitHub forks

Agentix is the leading framework for building AI agents with progressive disclosure - start simple, scale to enterprise. From zero-config agents to sophisticated multi-agent systems with Anthropic Claude integration and Model Context Protocol (MCP) support.

📋 Table of Contents

Key Features

🎯 Progressive Disclosure

  • Zero-config: agentix.agent("MyBot") - instant agent creation
  • Configuration-based: YAML/JSON for structured development
  • Graph-based: Full control with seven-node architecture
  • Enterprise-ready: Production deployment and monitoring

🤖 Best-in-Class LLM Support

  • Anthropic Claude: Direct API integration (Claude-3.5 Sonnet, Opus, Haiku)
  • OpenRouter: 100+ models from multiple providers
  • OpenAI: GPT-4, GPT-3.5 with function calling
  • Streaming: Real-time responses across all providers

🔧 Model Context Protocol (MCP)

  • Tool Ecosystem: Filesystem, web search, database, HTTP API, email
  • Server Discovery: Automatic MCP server detection and installation
  • Cross-Agent Sharing: Tools and memory across agent instances
  • CLI Management: agentix mcp commands for server management

🧠 Advanced Memory System

  • Temporal Knowledge Graphs: Graphiti-powered memory
  • Cross-Agent Memory: Shared memory via MCP protocol
  • Memory Scoping: Per-user, per-session, global memory
  • Real-time Sync: Memory drift tracking and visualization

🚀 Quick Start

Prerequisites

  • Python 3.8 or higher
  • pip package manager

Installation

# Basic installation
pip install agentix

# With MCP support (recommended)
pip install agentix[mcp]

# Full installation with all features
pip install agentix[all]

# Development installation
git clone https://github.com/AP3X-Dev/agentix.git
cd agentix
pip install -e ".[dev]"

Environment Setup

Create a .env file or set environment variables:

# Required for Claude integration
export ANTHROPIC_API_KEY="your_anthropic_key"

# Optional for other providers
export OPENAI_API_KEY="your_openai_key"
export OPENROUTER_API_KEY="your_openrouter_key"

Zero-Config Agent

import agentix

# Create an agent in one line
agent = agentix.agent("MyBot")
response = agent("What's the weather like?")
print(response)

Claude Agent with MCP Tools

import agentix

# Claude agent with filesystem and web search tools
agent = agentix.anthropic_agent(
    name="ClaudeBot",
    model="claude-3-5-sonnet-20241022",
    mcp_servers=["filesystem", "web_search"]
)

response = agent("""
Search for information about quantum computing,
save the results to a file, and summarize the key points.
""")

Multi-Provider Comparison

import agentix

# Test the same query across different models
models = [
    ("Claude-3.5 Sonnet", "claude-3-5-sonnet-20241022"),
    ("GPT-4 Turbo", "openai/gpt-4-turbo"),
    ("Gemini Pro", "google/gemini-pro")
]

for name, model in models:
    agent = agentix.create_agent(f"{name}Agent", llm_model=model)
    response = agent("Explain machine learning in simple terms")
    print(f"{name}: {response[:100]}...")

Temporal Knowledge Graph

from agentix.memory import TemporalKnowledgeGraph, TemporalNode, TemporalEdge
from datetime import datetime

# Create temporal knowledge graph
tkg = TemporalKnowledgeGraph()

# Add temporal nodes
ai_node = TemporalNode(
    node_type="concept",
    label="Artificial Intelligence",
    properties={"definition": "Machine intelligence"},
    created_at=datetime.now()
)

# Add to graph
tkg.add_node(ai_node)

# Query with temporal constraints
from agentix.memory import TemporalQuery

query = TemporalQuery(
    query_type="search",
    node_types=["concept"],
    time_range=(datetime(2024, 1, 1), datetime.now())
)

results = tkg.query(query)

Tool Integration

from agentix.tools import WebSearchTool, WebSearchConfig

# Configure web search tool
search_config = WebSearchConfig(
    name="web_search",
    description="Web search with content extraction",
    search_engine="duckduckgo",
    max_results=5,
    extract_content=True
)

# Create and use tool
search_tool = WebSearchTool(search_config)

async def search_example():
    result = await search_tool.run({
        "query": "latest AI research",
        "max_results": 3
    })
    return result

Guardrails & Safety

from agentix.guardrails import InputValidator, SafetyChecker
from agentix.guardrails import InputValidationConfig, SafetyConfig

# Input validation
input_config = InputValidationConfig(
    max_input_length=1000,
    block_personal_info=True,
    validate_urls=True
)

validator = InputValidator(input_config)
validation_result = validator.validate("User input text")

# Safety checking
safety_config = SafetyConfig(
    check_harmful_content=True,
    check_personal_info=True,
    safety_threshold=0.8
)

safety_checker = SafetyChecker(safety_config)
safety_result = safety_checker.check_safety("Content to check")

🏛️ Architecture

Seven-Node Blueprint

  1. LLM Nodes: Primary reasoning and text generation
  2. Tool Nodes: External action execution (APIs, databases, etc.)
  3. Control Nodes: Flow control and decision making
  4. Memory Nodes: Temporal knowledge management
  5. Guardrail Nodes: Safety and validation
  6. Fallback Nodes: Error handling and recovery
  7. Human Input Nodes: Human-in-the-loop integration

Temporal Knowledge Graphs

Unlike static RAG systems, Agentix uses temporal knowledge graphs that:

  • Track knowledge validity over time
  • Support dynamic relationship updates
  • Enable temporal reasoning and queries
  • Provide automatic knowledge consolidation

📚 Documentation

📖 Full documentation coming soon! We’re working on comprehensive docs including API reference, tutorials, and guides.

🔧 Configuration

Environment Variables

# LLM Provider API Keys
export OPENAI_API_KEY="your_openai_key"
export ANTHROPIC_API_KEY="your_anthropic_key"

# Search Engine API Keys
export GOOGLE_API_KEY="your_google_key"
export GOOGLE_SEARCH_ENGINE_ID="your_search_engine_id"
export BING_API_KEY="your_bing_key"

# Database Configuration
export DATABASE_URL="postgresql://user:pass@localhost/agentix"

# Framework Configuration
export AGENTIX_ENVIRONMENT="development"
export AGENTIX_LOG_LEVEL="INFO"

Configuration Files

# agentix_config.yaml
framework_version: "0.1.0"
environment: "development"
log_level: "INFO"

memory_config:
  enable_temporal_graph: true
  enable_episodic_memory: true
  auto_consolidation: true

tool_config:
  default_timeout: 30
  max_retries: 3
  enable_validation: true

security_config:
  enable_guardrails: true
  validate_inputs: true
  validate_outputs: true

🧪 Examples

See the examples/ directory for comprehensive examples:

Demo Applications

Check out the demo/ directory for complete applications:

🤝 Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

Development Setup

# Clone repository
git clone https://github.com/AP3X-Dev/agentix.git
cd agentix

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install development dependencies
pip install -e ".[dev]"

# Verify installation
python -c "import agentix; print('Agentix installed successfully!')"

# Run tests
pytest

# Run code quality checks
black agentix/
isort agentix/
mypy agentix/
flake8 agentix/

Testing

# Run all tests
pytest

# Run with coverage
pytest --cov=agentix --cov-report=html

# Run specific test file
pytest tests/test_agent.py

# Run integration tests
pytest tests/integration/

🔒 Security

API Key Management

  • Never commit API keys to version control
  • Use environment variables or .env files
  • Rotate keys regularly
  • Use different keys for development and production

Reporting Security Issues

If you discover a security vulnerability, please email [email protected] instead of creating a public issue.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • Inspired by the LangGraph framework
  • Built with Pydantic for type safety
  • Temporal knowledge graph concepts from academic research
  • Community feedback and contributions

📞 Support

Getting Help

  1. Check existing issues - Your question might already be answered
  2. Search discussions - Community knowledge base
  3. Create an issue - For bugs or feature requests
  4. Start a discussion - For questions and ideas

Agentix - Building the future of AI agents with temporal intelligence.

Tools

No tools

Comments