- Explore MCP Servers
- MCP-youtube-server
Mcp Youtube Server
What is Mcp Youtube Server
MCP-youtube-server is a powerful Model Context Protocol (MCP) server designed to provide comprehensive YouTube functionality and AI-powered text processing tools, deployed as a Cloudflare Worker.
Use cases
Use cases include analyzing video comments for sentiment, generating video scripts for content creators, optimizing video SEO for better visibility, and comparing video performance metrics for strategic decision-making.
How to use
To use MCP-youtube-server, access the live server at https://youtube-mcp-server.anis-ayari-perso.workers.dev and utilize the REST API endpoints for various YouTube functionalities such as video search, comment analysis, and script generation.
Key features
Key features include YouTube video search with detailed metadata, comment analysis for sentiment insights, AI-powered text tools for rewriting and summarizing, SEO optimization, video performance comparison, script generation, KV-based caching, full MCP protocol support, and CORS enabled for browser calls.
Where to use
MCP-youtube-server can be used in various fields including digital marketing, content creation, social media analysis, and educational purposes where YouTube video insights and text processing are beneficial.
Clients Supporting MCP
The following are the main client software that supports the Model Context Protocol. Click the link to visit the official website for more information.
Overview
What is Mcp Youtube Server
MCP-youtube-server is a powerful Model Context Protocol (MCP) server designed to provide comprehensive YouTube functionality and AI-powered text processing tools, deployed as a Cloudflare Worker.
Use cases
Use cases include analyzing video comments for sentiment, generating video scripts for content creators, optimizing video SEO for better visibility, and comparing video performance metrics for strategic decision-making.
How to use
To use MCP-youtube-server, access the live server at https://youtube-mcp-server.anis-ayari-perso.workers.dev and utilize the REST API endpoints for various YouTube functionalities such as video search, comment analysis, and script generation.
Key features
Key features include YouTube video search with detailed metadata, comment analysis for sentiment insights, AI-powered text tools for rewriting and summarizing, SEO optimization, video performance comparison, script generation, KV-based caching, full MCP protocol support, and CORS enabled for browser calls.
Where to use
MCP-youtube-server can be used in various fields including digital marketing, content creation, social media analysis, and educational purposes where YouTube video insights and text processing are beneficial.
Clients Supporting MCP
The following are the main client software that supports the Model Context Protocol. Click the link to visit the official website for more information.
Content
YouTube MCP Server
A powerful Model Context Protocol (MCP) server that provides comprehensive YouTube functionality and AI-powered text processing tools, deployed as a Cloudflare Worker.
🚀 Live Server
The server is deployed at: https://youtube-mcp-server.anis-ayari-perso.workers.dev
📋 Features
- YouTube Video Search: Search and analyze YouTube videos with detailed metadata
- Comment Analysis: Analyze video comments for sentiment and insights
- AI-Powered Text Tools: Rewrite, summarize, expand, translate, and enhance text
- SEO Optimization: Extract keywords and tags from successful videos
- Video Comparison: Compare performance metrics across multiple videos
- Script Generation: Create complete YouTube video scripts
- Caching: KV-based caching for improved performance
- MCP Protocol Support: Full MCP protocol implementation
- REST API: Direct REST endpoints for easy integration
- CORS Enabled: Can be called from web browsers
🛠️ Available Tools (13 Total)
YouTube Tools
1. YouTube Video Search (search_youtube_videos
)
Search YouTube videos with detailed metadata.
Parameters:
query
(string, required): Search querymaxResults
(number, optional): Maximum results (default: 20)
Returns: Video ID, title, description, URL, thumbnails, view count, duration, channel info
2. Analyze Video Comments (analyze_video_comments
)
Analyze comments sentiment and themes for a video.
Parameters:
videoId
(string, required): YouTube video IDmaxComments
(number, optional): Maximum comments to analyze (default: 100)
Returns: Sentiment analysis, recurring themes, viewer feedback insights
3. Generate Video Script (generate_video_script
)
Generate complete YouTube video scripts with hooks, content, and CTAs.
Parameters:
topic
(string, required): Video topicduration
(string, optional): “short”, “medium”, “long” (default: “medium”)style
(string, optional): “educational”, “entertainment”, “tutorial”, “vlog” (default: “educational”)targetAudience
(string, optional): Target audience description
Returns: Complete script with timestamps, visual suggestions, and engagement prompts
4. Extract YouTube SEO (extract_youtube_seo
)
Extract SEO keywords and tags from successful videos.
Parameters:
query
(string, required): Topic to analyzecompetitors
(number, optional): Number of videos to analyze (default: 10)
Returns: Keywords, title formulas, tags, optimization techniques
5. Compare Videos (compare_videos
)
Compare performance metrics of multiple videos.
Parameters:
videoIds
(array, required): Array of video IDs to compare
Returns: Performance rankings, success factors, improvement recommendations
6. Analyze Video Landscape (analyze_video_landscape
)
Analyze existing videos and suggest unique content angles.
Parameters:
query
(string, required): Topic to analyzemaxVideos
(number, optional): Number of videos to analyze (default: 10)
Returns: Content gaps, unique video ideas, target audiences
AI Text Tools
7. OpenAI Completion (openai_completion
)
Generate text using OpenAI models.
Parameters:
prompt
(string, required): Text promptmodel
(string, optional): OpenAI model (default: “gpt-4o-mini”)maxTokens
(number, optional): Maximum tokens (default: 1000)
8. Rewrite Text (rewrite_text
)
Rewrite text in different styles.
Parameters:
text
(string, required): Text to rewritestyle
(string, optional): “professional”, “casual”, “formal”, “creative” (default: “professional”)
9. Summarize Text (summarize_text
)
Create concise summaries.
Parameters:
text
(string, required): Text to summarizelength
(string, optional): “short”, “medium”, “long” (default: “medium”)
10. Expand Text (expand_text
)
Expand text with additional details.
Parameters:
text
(string, required): Text to expandtargetLength
(string, optional): Target expansion (default: “double”)
11. Fix Grammar (fix_grammar
)
Fix grammar, spelling, and punctuation.
Parameters:
text
(string, required): Text to fix
12. Translate Text (translate_text
)
Translate text to other languages.
Parameters:
text
(string, required): Text to translatetargetLanguage
(string, optional): Target language (default: “Spanish”)
13. Simplify Text (simplify_text
)
Simplify text for easier reading.
Parameters:
text
(string, required): Text to simplifyreadingLevel
(string, optional): “elementary”, “high-school”, “general” (default: “general”)
📡 API Endpoints
REST Endpoints
YouTube Search
GET /youtube/search?query=<search_term>&maxResults=<number>
OpenAI Completion
POST /openai/completion
Content-Type: application/json
{
"prompt": "Your prompt here",
"model": "gpt-4o-mini",
"maxTokens": 1000
}
Text Enhancement Endpoints
POST /text/rewrite
POST /text/summarize
POST /text/expand
POST /text/fix-grammar
POST /text/translate
POST /text/simplify
Content-Type: application/json
{
"text": "Your text here",
// Additional parameters based on endpoint
}
MCP Endpoint
List All Tools
POST /mcp
Content-Type: application/json
{
"method": "tools/list"
}
Call a Tool
POST /mcp
Content-Type: application/json
{
"method": "tools/call",
"params": {
"name": "tool_name",
"arguments": {
// tool-specific arguments
}
}
}
💻 Usage Examples
Example 1: Analyze Video Performance
// Search for videos
const searchResponse = await fetch('https://youtube-mcp-server.anis-ayari-perso.workers.dev/mcp', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
method: 'tools/call',
params: {
name: 'search_youtube_videos',
arguments: { query: 'javascript tutorial', maxResults: 5 }
}
})
});
// Analyze comments from top video
const videoId = 'VIDEO_ID_HERE';
const commentsResponse = await fetch('https://youtube-mcp-server.anis-ayari-perso.workers.dev/mcp', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
method: 'tools/call',
params: {
name: 'analyze_video_comments',
arguments: { videoId, maxComments: 100 }
}
})
});
Example 2: Generate Optimized Content
// Extract SEO insights
const seoResponse = await fetch('https://youtube-mcp-server.anis-ayari-perso.workers.dev/mcp', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
method: 'tools/call',
params: {
name: 'extract_youtube_seo',
arguments: { query: 'web development', competitors: 10 }
}
})
});
// Generate script based on insights
const scriptResponse = await fetch('https://youtube-mcp-server.anis-ayari-perso.workers.dev/mcp', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
method: 'tools/call',
params: {
name: 'generate_video_script',
arguments: {
topic: 'Web Development for Beginners',
duration: 'medium',
style: 'tutorial',
targetAudience: 'Complete beginners'
}
}
})
});
Example 3: Compare Competitor Videos
const compareResponse = await fetch('https://youtube-mcp-server.anis-ayari-perso.workers.dev/mcp', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
method: 'tools/call',
params: {
name: 'compare_videos',
arguments: {
videoIds: ['VIDEO_ID_1', 'VIDEO_ID_2', 'VIDEO_ID_3']
}
}
})
});
📝 Response Formats
YouTube Search Response
{
"videoId": "dQw4w9WgXcQ",
"title": "Video Title",
"description": "Video description...",
"url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
"thumbnail": {
"default": "https://i.ytimg.com/vi/dQw4w9WgXcQ/default.jpg",
"medium": "https://i.ytimg.com/vi/dQw4w9WgXcQ/mqdefault.jpg",
"high": "https://i.ytimg.com/vi/dQw4w9WgXcQ/hqdefault.jpg"
},
"publishedAt": "2024-01-01T00:00:00Z",
"channelTitle": "Channel Name",
"viewCount": "1000000",
"duration": "10:30",
"captions": []
}
MCP Tool Response
🚀 Performance Features
- Caching: Results are cached for 1 hour using Cloudflare KV
- Concurrent Processing: Multiple tools can be called in parallel
- Optimized Responses: Large responses are efficiently structured
🔧 Development
Local Development
npm install npm run dev
Deploy to Cloudflare
npm run deploy
Environment Variables
YOUTUBE_API_KEY
: YouTube Data API v3 keyOPENAI_API_KEY
: OpenAI API keyCACHE
: KV namespace binding (configured in wrangler.toml)
🔒 Security
- API keys stored as Cloudflare Worker secrets
- CORS enabled for browser access
- Rate limiting handled by Cloudflare
📊 Use Cases
- Content Creators: Research trends, analyze competition, generate scripts
- SEO Specialists: Extract keywords, optimize titles and descriptions
- Market Researchers: Analyze viewer sentiment and engagement
- Educators: Create educational content with proper structure
- Marketers: Compare campaign performance, identify content gaps
🤝 Contributing
Contributions welcome! Please open an issue or submit a pull request.
📄 License
MIT License
📧 Support
For issues and questions, please open an issue on GitHub.
DevTools Supporting MCP
The following are the main code editors that support the Model Context Protocol. Click the link to visit the official website for more information.