- Explore MCP Servers
- airflow
Apache Airflow
Overview
What is Apache Airflow
This project is a Model Context Protocol (MCP) server implementation for Apache Airflow that facilitates integration with MCP clients, enabling standardized interactions with Airflow’s REST API.
Use cases
This server can be used for managing Apache Airflow tasks, including creating and monitoring DAGs (Directed Acyclic Graphs), managing task instances and XComs, handling variables and connections, and performing health checks.
How to use
To use this MCP server, set required environment variables such as AIRFLOW_HOST, AIRFLOW_USERNAME, and AIRFLOW_PASSWORD. Then run the server using commands in a configuration setup for Claude Desktop or manually via the command line.
Key features
The server offers complete API coverage for DAG management, task management, variable and connection handling, as well as event logging and monitoring features. Each functionality is mapped to its respective API endpoint in Apache Airflow.
Where to use
This MCP server is suitable for environments utilizing Apache Airflow for workflow management, particularly when integration with various MCP clients is required, enhancing the flexibility and usability of Apache Airflow’s capabilities.
Content
mcp-server-apache-airflow
A Model Context Protocol (MCP) server implementation for Apache Airflow, enabling seamless integration with MCP clients. This project provides a standardized way to interact with Apache Airflow through the Model Context Protocol.
About
This project implements a Model Context Protocol server that wraps Apache Airflow’s REST API, allowing MCP clients to interact with Airflow in a standardized way. It uses the official Apache Airflow client library to ensure compatibility and maintainability.
Feature Implementation Status
Feature | API Path | Status |
---|---|---|
DAG Management | ||
List DAGs | /api/v1/dags |
✅ |
Get DAG Details | /api/v1/dags/{dag_id} |
✅ |
Pause DAG | /api/v1/dags/{dag_id} |
✅ |
Unpause DAG | /api/v1/dags/{dag_id} |
✅ |
Update DAG | /api/v1/dags/{dag_id} |
✅ |
Delete DAG | /api/v1/dags/{dag_id} |
✅ |
Get DAG Source | /api/v1/dagSources/{file_token} |
✅ |
Patch Multiple DAGs | /api/v1/dags |
✅ |
Reparse DAG File | /api/v1/dagSources/{file_token}/reparse |
✅ |
DAG Runs | ||
List DAG Runs | /api/v1/dags/{dag_id}/dagRuns |
✅ |
Create DAG Run | /api/v1/dags/{dag_id}/dagRuns |
✅ |
Get DAG Run Details | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id} |
✅ |
Update DAG Run | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id} |
✅ |
Delete DAG Run | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id} |
✅ |
Get DAG Runs Batch | /api/v1/dags/~/dagRuns/list |
✅ |
Clear DAG Run | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/clear |
✅ |
Set DAG Run Note | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/setNote |
✅ |
Get Upstream Dataset Events | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/upstreamDatasetEvents |
✅ |
Tasks | ||
List DAG Tasks | /api/v1/dags/{dag_id}/tasks |
✅ |
Get Task Details | /api/v1/dags/{dag_id}/tasks/{task_id} |
✅ |
Get Task Instance | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id} |
✅ |
List Task Instances | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances |
✅ |
Update Task Instance | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id} |
✅ |
Clear Task Instances | /api/v1/dags/{dag_id}/clearTaskInstances |
✅ |
Set Task Instances State | /api/v1/dags/{dag_id}/updateTaskInstancesState |
✅ |
Variables | ||
List Variables | /api/v1/variables |
✅ |
Create Variable | /api/v1/variables |
✅ |
Get Variable | /api/v1/variables/{variable_key} |
✅ |
Update Variable | /api/v1/variables/{variable_key} |
✅ |
Delete Variable | /api/v1/variables/{variable_key} |
✅ |
Connections | ||
List Connections | /api/v1/connections |
✅ |
Create Connection | /api/v1/connections |
✅ |
Get Connection | /api/v1/connections/{connection_id} |
✅ |
Update Connection | /api/v1/connections/{connection_id} |
✅ |
Delete Connection | /api/v1/connections/{connection_id} |
✅ |
Test Connection | /api/v1/connections/test |
✅ |
Pools | ||
List Pools | /api/v1/pools |
✅ |
Create Pool | /api/v1/pools |
✅ |
Get Pool | /api/v1/pools/{pool_name} |
✅ |
Update Pool | /api/v1/pools/{pool_name} |
✅ |
Delete Pool | /api/v1/pools/{pool_name} |
✅ |
XComs | ||
List XComs | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries |
✅ |
Get XCom Entry | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries/{xcom_key} |
✅ |
Datasets | ||
List Datasets | /api/v1/datasets |
✅ |
Get Dataset | /api/v1/datasets/{uri} |
✅ |
Get Dataset Events | /api/v1/datasetEvents |
✅ |
Create Dataset Event | /api/v1/datasetEvents |
✅ |
Get DAG Dataset Queued Event | /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri} |
✅ |
Get DAG Dataset Queued Events | /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents |
✅ |
Delete DAG Dataset Queued Event | /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri} |
✅ |
Delete DAG Dataset Queued Events | /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents |
✅ |
Get Dataset Queued Events | /api/v1/datasets/{uri}/dagRuns/queued/datasetEvents |
✅ |
Delete Dataset Queued Events | /api/v1/datasets/{uri}/dagRuns/queued/datasetEvents |
✅ |
Monitoring | ||
Get Health | /api/v1/health |
✅ |
DAG Stats | ||
Get DAG Stats | /api/v1/dags/statistics |
✅ |
Config | ||
Get Config | /api/v1/config |
✅ |
Plugins | ||
Get Plugins | /api/v1/plugins |
✅ |
Providers | ||
List Providers | /api/v1/providers |
✅ |
Event Logs | ||
List Event Logs | /api/v1/eventLogs |
✅ |
Get Event Log | /api/v1/eventLogs/{event_log_id} |
✅ |
System | ||
Get Import Errors | /api/v1/importErrors |
✅ |
Get Import Error Details | /api/v1/importErrors/{import_error_id} |
✅ |
Get Health Status | /api/v1/health |
✅ |
Get Version | /api/v1/version |
✅ |
Setup
Dependencies
This project depends on the official Apache Airflow client library (apache-airflow-client
). It will be automatically installed when you install this package.
Environment Variables
Set the following environment variables:
AIRFLOW_HOST=<your-airflow-host> AIRFLOW_USERNAME=<your-airflow-username> AIRFLOW_PASSWORD=<your-airflow-password> AIRFLOW_API_VERSION=v1 # Optional, defaults to v1
Usage with Claude Desktop
Add to your claude_desktop_config.json
:
{
"mcpServers": {
"mcp-server-apache-airflow": {
"command": "uvx",
"args": [
"mcp-server-apache-airflow"
],
"env": {
"AIRFLOW_HOST": "https://your-airflow-host",
"AIRFLOW_USERNAME": "your-username",
"AIRFLOW_PASSWORD": "your-password"
}
}
}
}
Alternative configuration using uv
:
{
"mcpServers": {
"mcp-server-apache-airflow": {
"command": "uv",
"args": [
"--directory",
"/path/to/mcp-server-apache-airflow",
"run",
"mcp-server-apache-airflow"
],
"env": {
"AIRFLOW_HOST": "https://your-airflow-host",
"AIRFLOW_USERNAME": "your-username",
"AIRFLOW_PASSWORD": "your-password"
}
}
}
}
Replace /path/to/mcp-server-apache-airflow
with the actual path where you’ve cloned the repository.
Selecting the API groups
You can select the API groups you want to use by setting the --apis
flag.
uv run mcp-server-apache-airflow --apis "dag,dagrun"
The default is to use all APIs.
Allowed values are:
- config
- connections
- dag
- dagrun
- dagstats
- dataset
- eventlog
- importerror
- monitoring
- plugin
- pool
- provider
- taskinstance
- variable
- xcom
Manual Execution
You can also run the server manually:
make run
make run
accepts following options:
Options:
--port
: Port to listen on for SSE (default: 8000)--transport
: Transport type (stdio/sse, default: stdio)
Or, you could run the sse server directly, which accepts same parameters:
make run-sse
Installing via Smithery
To install Apache Airflow MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @yangkyeongmo/mcp-server-apache-airflow --client claude
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
The package is deployed automatically to PyPI when project.version is updated in pyproject.toml
.
Follow semver for versioning.
Please include version update in the PR in order to apply the changes to core logic.