MCP ExplorerExplorer

Aws Mcp Server

@LokiMCPUniverseon 14 days ago
1 MIT
FreeCommunity
AI Systems
#automation#aws#cloud#devops#genai#infrastructure#mcp#ai-agents#enterprise#model-context-protocol
MCP server for AWS API integration - Comprehensive cloud infrastructure management for GenAI

Overview

What is Aws Mcp Server

aws-mcp-server is a comprehensive Model Context Protocol (MCP) server designed for integrating Amazon Web Services (AWS) APIs with Generative AI applications, facilitating cloud infrastructure management.

Use cases

Use cases include managing AWS resources for AI applications, automating cloud operations, monitoring and optimizing costs, and ensuring compliance and security across multiple AWS accounts.

How to use

To use aws-mcp-server, install it via pip with ‘pip install aws-mcp-server’ or from source. Configure your AWS credentials in a ‘.env’ file or as environment variables, then initialize and start the server in your Python application.

Key features

Key features include comprehensive AWS service coverage (EC2, S3, Lambda, DynamoDB, RDS, CloudFormation, IAM, CloudWatch, SQS/SNS, ECS/EKS), multiple authentication methods (IAM Access Keys, IAM Roles, AWS SSO), and enterprise features like multi-account support, cross-region operations, rate limiting, cost tracking, and compliance scanning.

Where to use

aws-mcp-server is used in cloud infrastructure management, particularly for applications that require integration with AWS services and Generative AI technologies.

Content

AWS MCP Server

Aws Mcp Server

GitHub stars
GitHub forks
GitHub watchers

License
Issues
Pull Requests
Last Commit

Python
MCP

Commit Activity
Code Size
Contributors

A comprehensive Model Context Protocol (MCP) server for integrating Amazon Web Services (AWS) APIs with GenAI applications.

Features

  • Comprehensive AWS Service Coverage:

    • EC2: Instance management, security groups, AMIs
    • S3: Bucket operations, object management, presigned URLs
    • Lambda: Function deployment, invocation, configuration
    • DynamoDB: Table operations, queries, batch operations
    • RDS: Database instances, snapshots, parameter groups
    • CloudFormation: Stack management, template validation
    • IAM: User, role, and policy management
    • CloudWatch: Metrics, logs, alarms
    • SQS/SNS: Message queuing and notifications
    • ECS/EKS: Container and Kubernetes management
  • Authentication Methods:

    • IAM Access Keys
    • IAM Roles
    • AWS SSO
    • Temporary credentials via STS
    • MFA support
  • Enterprise Features:

    • Multi-account support
    • Cross-region operations
    • Rate limiting and retry logic
    • Cost tracking and optimization
    • Compliance and security scanning

Installation

pip install aws-mcp-server

Or install from source:

git clone https://github.com/asklokesh/aws-mcp-server.git
cd aws-mcp-server
pip install -e .

Configuration

Create a .env file or set environment variables:

# AWS Credentials
AWS_ACCESS_KEY_ID=your_access_key
AWS_SECRET_ACCESS_KEY=your_secret_key
AWS_DEFAULT_REGION=us-east-1

# OR use IAM Role
AWS_ROLE_ARN=arn:aws:iam::123456789012:role/YourRole
AWS_ROLE_SESSION_NAME=mcp-session

# Optional Settings
AWS_SESSION_TOKEN=your_session_token
AWS_MFA_SERIAL=arn:aws:iam::123456789012:mfa/user
AWS_PROFILE=default
AWS_MAX_RETRIES=3
AWS_TIMEOUT=30

Quick Start

Basic Usage

from aws_mcp import AWSMCPServer

# Initialize the server
server = AWSMCPServer()

# Start the server
server.start()

Claude Desktop Configuration

Add to your Claude Desktop config:

{
  "mcpServers": {
    "aws": {
      "command": "python",
      "args": [
        "-m",
        "aws_mcp.server"
      ],
      "env": {
        "AWS_ACCESS_KEY_ID": "your_access_key",
        "AWS_SECRET_ACCESS_KEY": "your_secret_key",
        "AWS_DEFAULT_REGION": "us-east-1"
      }
    }
  }
}

Available Tools

EC2 Operations

List Instances

{
  "tool": "aws_ec2_list_instances",
  "arguments": {
    "filters": [
      {"Name": "instance-state-name", "Values": ["running"]}
    ],
    "region": "us-east-1"
  }
}

Create Instance

{
  "tool": "aws_ec2_create_instance",
  "arguments": {
    "ami_id": "ami-0abcdef1234567890",
    "instance_type": "t3.micro",
    "key_name": "my-key-pair",
    "security_group_ids": ["sg-123456"],
    "subnet_id": "subnet-123456",
    "tags": {"Name": "MyInstance", "Environment": "Dev"}
  }
}

S3 Operations

List Buckets

{
  "tool": "aws_s3_list_buckets",
  "arguments": {}
}

Upload Object

{
  "tool": "aws_s3_upload_object",
  "arguments": {
    "bucket": "my-bucket",
    "key": "path/to/object.txt",
    "content": "File content here",
    "content_type": "text/plain"
  }
}

Generate Presigned URL

{
  "tool": "aws_s3_presigned_url",
  "arguments": {
    "bucket": "my-bucket",
    "key": "path/to/object.txt",
    "expiration": 3600,
    "operation": "get_object"
  }
}

Lambda Operations

Invoke Function

{
  "tool": "aws_lambda_invoke",
  "arguments": {
    "function_name": "myFunction",
    "payload": {"key": "value"},
    "invocation_type": "RequestResponse"
  }
}

Deploy Function

{
  "tool": "aws_lambda_deploy",
  "arguments": {
    "function_name": "myFunction",
    "runtime": "python3.9",
    "handler": "index.handler",
    "code_zip_path": "/path/to/code.zip",
    "role_arn": "arn:aws:iam::123456789012:role/lambda-role"
  }
}

DynamoDB Operations

Query Table

{
  "tool": "aws_dynamodb_query",
  "arguments": {
    "table_name": "MyTable",
    "key_condition_expression": "PK = :pk",
    "expression_attribute_values": {":pk": "USER#123"}
  }
}

CloudFormation Operations

Create Stack

{
  "tool": "aws_cloudformation_create_stack",
  "arguments": {
    "stack_name": "my-stack",
    "template_body": "...",
    "parameters": [
      {"ParameterKey": "KeyName", "ParameterValue": "my-key"}
    ]
  }
}

Advanced Configuration

Multi-Account Support

from aws_mcp import AWSMCPServer, AccountConfig

# Configure multiple accounts
accounts = {
    "production": AccountConfig(
        access_key_id="prod_key",
        secret_access_key="prod_secret",
        region="us-east-1"
    ),
    "development": AccountConfig(
        access_key_id="dev_key",
        secret_access_key="dev_secret",
        region="us-west-2"
    ),
    "staging": AccountConfig(
        role_arn="arn:aws:iam::987654321098:role/StagingRole",
        region="eu-west-1"
    )
}

server = AWSMCPServer(accounts=accounts, default_account="production")

Cross-Region Operations

from aws_mcp import AWSMCPServer, RegionConfig

# Enable specific regions
regions = ["us-east-1", "us-west-2", "eu-west-1", "ap-southeast-1"]

server = AWSMCPServer(enabled_regions=regions)

Cost Optimization

from aws_mcp import AWSMCPServer, CostConfig

cost_config = CostConfig(
    track_costs=True,
    cost_alert_threshold=100.0,  # Alert if estimated cost > $100
    require_cost_approval=True,   # Require approval for expensive operations
    cost_allocation_tags=["Project", "Environment", "Owner"]
)

server = AWSMCPServer(cost_config=cost_config)

Integration Examples

See the examples/ directory for complete integration examples:

  • basic_usage.py - Common AWS operations
  • multi_account.py - Managing multiple AWS accounts
  • infrastructure_as_code.py - CloudFormation and CDK integration
  • cost_optimization.py - Cost tracking and optimization
  • security_scanning.py - Security and compliance checks
  • genai_integration.py - Integration with GenAI APIs

Security Best Practices

  1. Never commit credentials - Use environment variables or AWS credential files
  2. Use IAM roles when possible - More secure than access keys
  3. Enable MFA - For sensitive operations
  4. Implement least privilege - Grant minimal required permissions
  5. Enable CloudTrail - Audit all API operations
  6. Use VPC endpoints - For private connectivity
  7. Encrypt data - Use KMS for encryption keys

Error Handling

The server provides detailed error information:

try:
    result = server.execute_tool("aws_ec2_create_instance", {
        "ami_id": "invalid-ami"
    })
except AWSError as e:
    print(f"AWS error: {e.error_code} - {e.message}")
    print(f"Request ID: {e.request_id}")

Performance Optimization

  1. Use batch operations - For multiple similar requests
  2. Enable caching - For frequently accessed data
  3. Implement pagination - For large result sets
  4. Use regional endpoints - Reduce latency
  5. Connection pooling - Reuse HTTP connections

Contributing

Contributions are welcome! Please read our contributing guidelines and submit pull requests.

License

MIT License - see LICENSE file for details

Tools

No tools

Comments