- Explore MCP Servers
- aws-serverless-mcp
Aws Serverless Mcp
What is Aws Serverless Mcp
aws-serverless-mcp is a server implementation of the MCP framework utilizing AWS Serverless services, enabling scalable and efficient management of tasks and events.
Use cases
Use cases for aws-serverless-mcp include automating workflows, managing scheduled tasks, integrating with other AWS services, and building scalable applications without the need for server management.
How to use
To use aws-serverless-mcp, install the SAM CLI, build the application with ‘sam build’, and deploy it using ‘sam deploy --guided’. Ensure to provide necessary parameters such as EventBusName, Project, and ServerName during deployment.
Key features
Key features of aws-serverless-mcp include integration with AWS Lambda, EventBridge for event handling, and Step Functions for managing workflows. It supports OAuth authentication and provides a customizable server endpoint.
Where to use
aws-serverless-mcp can be used in various fields such as cloud computing, event-driven architectures, and applications requiring serverless computing solutions for task management.
Clients Supporting MCP
The following are the main client software that supports the Model Context Protocol. Click the link to visit the official website for more information.
Overview
What is Aws Serverless Mcp
aws-serverless-mcp is a server implementation of the MCP framework utilizing AWS Serverless services, enabling scalable and efficient management of tasks and events.
Use cases
Use cases for aws-serverless-mcp include automating workflows, managing scheduled tasks, integrating with other AWS services, and building scalable applications without the need for server management.
How to use
To use aws-serverless-mcp, install the SAM CLI, build the application with ‘sam build’, and deploy it using ‘sam deploy --guided’. Ensure to provide necessary parameters such as EventBusName, Project, and ServerName during deployment.
Key features
Key features of aws-serverless-mcp include integration with AWS Lambda, EventBridge for event handling, and Step Functions for managing workflows. It supports OAuth authentication and provides a customizable server endpoint.
Where to use
aws-serverless-mcp can be used in various fields such as cloud computing, event-driven architectures, and applications requiring serverless computing solutions for task management.
Clients Supporting MCP
The following are the main client software that supports the Model Context Protocol. Click the link to visit the official website for more information.
Content
Serverless MCP Framework
MCP Server implementation with AWS Serverless services.
Created resources
A set of Lambda function connected to EventBridge rules that handle start, stop and task start. Create StepFunction state machine to wait until a specific date and send events.
Installation
Using the SAM CLI:
sam build sam deploy --guided
Parameters
This application need some parameters when you deploy it:
-
EventBusName: The event bus name to connect the integration to
-
Project: Project identifier
-
Environment: Environment identifier
-
ServerName: The MCP server name
-
ServerVersion: The MCP server version
-
Instructions: The MCP server instructions
-
DomainName: The domain name of the endpoint
-
AcmCertificateArn: The certificate arn for the domain name provided
-
AuthenticationType: Authentication type for the MCP server
-
AuthenticationToken: The authentication token for the MCP server
-
OAuthIssuerUrl: The issuer URL for OAuth authentication
-
OAuthAuthorizationUrl: The authorization URL for OAuth authentication
-
OAuthTokenUrl: The token URL for OAuth authentication
-
OAuthRevocationUrl: The revocation URL for OAuth authentication
-
OAuthRedirectUris: The redirect URIs for OAuth authentication
Outputs
- ServerEndpoint: The MCP server endpoint
Development
Requirements:
- NodeJS >= 22.x
Install NPM modules
npm install
Configure the .env file with MCP server specifications:
SERVER_NAME=local SERVER_VERSION=1.0.0 INSTRUCTIONS=""
Configure the .env file with AWS environment configuration:
AWS_PROFILE=<your AWS profile> AWS_REGION=<selected AWS region> SSM_PREFIX= TOOLS_SSM_PREFIX= RESOURCES_SSM_PREFIX= PROMPTS_SSM_PREFIX= TOOL_LAMBDA_PREFIX=
Run local MCP server
npm run dev
The MCP server is running on http://localhost:3000/mcp
.
Tool Inspector
Run the MCP Inspector
npm run inspector
Configure the inspector with:
- Transport Type:
Streamable HTTP
- URL:
http://localhost:3000/mcp
Connect to the MCP server with “Connect” button.
Claude Desktop
Use mcp-remote to proxy HTTP to STDIO:
{
"mcpServers": {
"example": {
"command": "npx",
"args": [
"-y",
"mcp-remote",
"https://xxxxxxxxxx.execute-api.eu-west-1.amazonaws.com/dev/mcp",
"--transport",
"http-only"
]
}
}
}
Deploy
Requirements:
Build project
sam build
Deploy the stack
sam deploy --profile <your AWS profile> --guided
Usage
Once the solution is installed, you can extend the MCP server with resources, prompts or tools using SSM parameters and Lambda functions.
The SSM parameters must begin with the prefix /<project name>/<environment name>/
, for example /mcp/dev/tools/echo
.
As an example of integration you can take inspiration from the template: template.integration.yaml.
Resources
The SSM parameters must begin with prefix /<project name>/<environment name>/resources/
, for example /mcp/dev/resources/example
.
The content must be in valid JSON format and have the properties:
- name: Resource name
- uri: Resource URI, for example “config://example”
- content: Resource text content
It can be declared in a SAM template as:
ExampleResourceParameter:
Type: AWS::SSM::Parameter
Properties:
Name: !Sub "/${Project}/${Environment}/resources/example"
Type: String
Value: |
{
"name": "example",
"uri": "config://example",
"content": "Just an example resource"
}
Prompts
The SSM parameters must begin with prefix /<project name>/<environment name>/prompts/
, for example /mcp/dev/prompts/echo
.
The content must be in valid JSON format and have the properties:
- name: Prompt name
- description: Prompt description
- inputSchema.json: JSON schema
- content: Prompt template content
The content template will be elaborate with ejs with input data interpolation.
It can be declared in a SAM template as:
EchoPromptParameter:
Type: AWS::SSM::Parameter
Properties:
Name: !Sub "/${Project}/${Environment}/prompts/echo"
Type: String
Value: |
{
"name": "echo",
"description": "Execute the example tool",
"inputSchema": {
"json": {
"type": "object",
"properties": {
"message": {
"type": "string"
}
},
"required": ["message"]
}
},
"content": "Execute the tool 'echo' with the message '<%= message %>'"
}
Tools
The SSM parameters must begin with prefix /<project name>/<environment name>/tools/
, for example /mcp/dev/tools/echo
.
The content must be in valid JSON format and have the properties:
- name: Prompt name
- description: Prompt description
- inputSchema.json: JSON schema
The related Lambda function that will be executed must be name as <project name>-<environment name>-tools-<tool name>
, for example mcp-dev-tools-echo
.
The function input and output must respect the Converse API pattern.
The parameter can be declared in a SAM template as:
EchoToolParameter:
Type: AWS::SSM::Parameter
Properties:
Name: !Sub "/${Project}/${Environment}/tools/echo"
Type: String
Value: |
{
"name": "echo",
"description": "Print the message provided in input",
"inputSchema": {
"json": {
"type": "object",
"properties": {
"message": {
"type": "string"
}
},
"required": ["message"]
}
}
}
The Lambda function implementation could be:
exports.handler = async ({ toolUseId, name, input }, context) => {
return {
name,
toolUseId,
status: 'success',
content: [{
text: input.message
}]
}
}
declared inline in a SAM template:
EchoToolFunction:
Type: AWS::Serverless::Function
Properties:
FunctionName: !Sub "${Project}-${Environment}-tools-echo"
Handler: index.handler
InlineCode: |
exports.handler = async ({ toolUseId, name, input }, context) => {
return {
name,
toolUseId,
status: 'success',
content: [{
text: input.message
}]
}
}
Credits
- Repository badges by Shields.io
- Infrastructure schema by Cloudcraft
Dev Tools Supporting MCP
The following are the main code editors that support the Model Context Protocol. Click the link to visit the official website for more information.