MCP ExplorerExplorer

Banbury Mcp Server

@Banbury-incon 17 days ago
1 Apache-2.0
FreeCommunity
AI Systems
Banbury MCP Server provides backend access for LLMs and AI applications.

Overview

What is Banbury Mcp Server

Banbury MCP Server is a Model Context Protocol (MCP) server that facilitates access to Banbury’s backend services, specifically designed for Large Language Models (LLMs) and AI applications.

Use cases

Use cases include integrating with web applications for LLM functionalities, managing devices and tasks in AI systems, and providing backend services for AI applications that require real-time data processing.

How to use

To use Banbury MCP Server, you can run it in HTTP mode by executing ‘./run-http.sh’ on port 3001 or a custom port. For Claude Desktop integration, use the stdio mode with ‘./run.sh’ and configure it in the Claude Desktop settings.

Key features

Key features include support for multiple transport modes (HTTP and stdio), various tools for authentication, device management, file management, task management, and model management, as well as utility tools for testing and entertainment.

Where to use

Banbury MCP Server is suitable for web applications, frontend integrations, and AI applications that require backend services for LLMs. It can be used in both development and production environments.

Content

Banbury Cloud MCP Server

A Model Context Protocol (MCP) server that provides access to Banbury’s backend services for LLMs and AI applications.

Quick Start

For Frontend Integration (HTTP Mode)

# Run on default port 3001
./run-http.sh

# Run on custom port
./run-http.sh 8080

Then add to your frontend .env:

REACT_APP_MCP_SERVER_URL=http://localhost:3001

For Claude Desktop (Stdio Mode)

# Default stdio mode
./run.sh

Add to Claude Desktop config:

{
  "mcpServers": {
    "banbury-mcp": {
      "command": "/path/to/banbury-mcp-server/run.sh"
    }
  }
}

Transport Modes

HTTP Transport

  • Use for: Frontend integration, web applications, API access
  • Port: Configurable (default: 3001)
  • Endpoints:
    • POST /tool - Execute MCP tools
    • GET /health - Server health and info

Stdio Transport

  • Use for: Claude Desktop, direct process communication
  • Communication: stdin/stdout
  • Integration: MCP client libraries

Environment Variables

# Transport mode: 'http' or 'stdio' (default: stdio)
export MCP_TRANSPORT=http

# HTTP port (default: 3001)  
export MCP_HTTP_PORT=8080

# Banbury environment: 'dev' or 'prod' (default: dev)
export BANBURY_ENV=dev

Available Tools

Authentication

  • banbury-login - Authenticate with Banbury credentials

Device Management

  • banbury-get-device-info - Get device information
  • banbury-update-device - Update device data
  • banbury-declare-online - Declare device online

File Management

  • banbury-get-files - Get files from specific path
  • banbury-get-scanned-folders - Get scanned folder list

Task Management

  • banbury-get-sessions - Get user sessions
  • banbury-add-task - Add new task

Model Management

  • banbury-add-model - Add model to device

Utility Tools

  • add - Simple addition (testing)
  • get-joke - Random joke (entertainment)

Usage Examples

HTTP Mode

# Health check
curl http://localhost:3001/health

# Get a joke
curl -X POST http://localhost:3001/tool \
  -H "Content-Type: application/json" \
  -d '{"tool": "get-joke", "parameters": {}}'

# Login to Banbury  
curl -X POST http://localhost:3001/tool \
  -H "Content-Type: application/json" \
  -d '{
    "tool": "banbury-login", 
    "parameters": {
      "username": "your-username",
      "password": "your-password",
      "environment": "dev"
    }
  }'

# Get device info using Authorization header
curl -X POST http://localhost:3001/tool \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer your-auth-token" \
  -d '{
    "tool": "banbury-get-device-info",
    "parameters": {
      "device_name": "your-device",
      "environment": "dev"
    }
  }'

# Get device info using X-API-Key and Authorization Bearer headers
curl -X POST http://localhost:3001/tool \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer your-auth-token" \
  -H "X-API-Key: your-mcp-server-api-key" \
  -d '{
    "tool": "banbury-get-device-info",
    "parameters": {
      "device_name": "your-device",
      "environment": "dev"
    }
  }'

# Get device info using parameters (legacy method)
curl -X POST http://localhost:3001/tool \
  -H "Content-Type: application/json" \
  -d '{
    "tool": "banbury-get-device-info",
    "parameters": {
      "token": "your-auth-token", 
      "apiKey": "your-api-key",
      "device_name": "your-device",
      "environment": "dev"
    }
  }'

Frontend Integration

The MCP server integrates seamlessly with the Banbury frontend:

  1. Set environment variable: REACT_APP_MCP_SERVER_URL=http://localhost:3001
  2. The frontend automatically uses stored Banbury credentials
  3. Authentication headers are automatically included in all requests:
    • X-Auth-Token: User’s Banbury token
    • X-Username: User’s Banbury username
    • Authorization: MCP server API key (if configured)
  4. AI conversations can call Banbury tools naturally
  5. Real-time status indicators show connection/auth state

Development

Project Structure

banbury-mcp-server/
├── main.ts           # Main server code
├── run.sh           # Stdio mode runner
├── run-http.sh      # HTTP mode runner  
├── package.json     # Dependencies
└── README.md        # Documentation

Adding New Tools

  1. Add tool definition in main.ts:
server.tool("my-new-tool", {
  token: z.string(),
  my_param: z.string(),
  environment: z.enum(['dev', 'prod']).default('dev')
}, async ({ token, my_param, environment }) => {
  // Implementation
});
  1. Add HTTP handler case:
case 'my-new-tool':
  result = await handleMyNewTool(parameters);
  break;

Testing

# Install dependencies
npm install

# Run in development
npm run dev

# Type checking
npm run type-check

Security

  • All Banbury API calls require authentication tokens
  • CORS enabled for frontend integration
  • No sensitive data logged or cached
  • Token validation handled by Banbury backend

Troubleshooting

Connection Issues

  • Verify the server is running: curl http://localhost:3001/health
  • Check firewall settings for HTTP mode
  • Ensure Banbury backend URLs are accessible

Authentication Errors

  • Verify Banbury credentials are valid
  • Check token hasn’t expired
  • Ensure proper environment (dev/prod) selection

Tool Execution Errors

  • Check server logs for detailed error messages
  • Verify required parameters are provided
  • Ensure token has proper permissions

For more help, check the server logs or the Banbury frontend integration guide.

Authentication Methods

The MCP server supports multiple authentication methods with the following priority order:

  1. Authorization Header: Authorization: Bearer <token> (Primary - matches axios global headers)
  2. X-Auth-Token Header: X-Auth-Token: <token> (Fallback)
  3. X-API-Key Header: X-API-Key: <api-key> (For MCP server API keys)
  4. X-Username Header: X-Username: <username> (For user context)
  5. Request Parameters: Include token and/or apiKey in the parameters object (Legacy)

The frontend automatically sends the Banbury user token via Authorization: Bearer <token> header, following the same pattern as the axios global headers implementation.

Tools

No tools

Comments