- Explore MCP Servers
- code-executor
Code Executor
Overview
What is Code Executor
The MCP Code Executor is a server environment that allows Large Language Models (LLMs) to execute Python code. It enables running code in a controlled environment, providing access to libraries and dependencies, and supports incremental code generation to manage large code blocks that may exceed token limits.
Use cases
The MCP Code Executor can be utilized for various scenarios, including executing and testing Python code snippets, installing necessary dependencies, and managing complex code structures that require multiple steps of code execution. It’s particularly beneficial for development and testing environments and can dynamically adapt based on user requirements.
How to use
To use the MCP Code Executor, configure the server by adding your specifications in the MCP servers configuration file. This involves setting environment variables based on the Python environment you are using (Conda or virtualenv). Once set up, LLMs can generate code using predefined tools for execution, file management, and environment configuration through JSON requests.
Key features
Key features include the ability to execute Python code snippets, install packages, check for package installations, dynamically configure the execution environment, and handle large code files incrementally by initializing and appending to files. It also provides tools to read and execute code files, making it versatile for code development needs.
Where to use
The MCP Code Executor can be used in environments where LLMs need to run Python code, such as in AI-driven coding assistants, interactive coding platforms, or educational tools that teach programming. It is suitable for automating code generation, testing, and script execution in both local and cloud-based applications.
Content
MCP Code Executor
The MCP Code Executor is an MCP server that allows LLMs to execute Python code within a specified Python environment. This enables LLMs to run code with access to libraries and dependencies defined in the environment. It also supports incremental code generation for handling large code blocks that may exceed token limits.
Features
- Execute Python code from LLM prompts
- Support for incremental code generation to overcome token limitations
- Run code within a specified environment (Conda, virtualenv, or UV virtualenv)
- Install dependencies when needed
- Check if packages are already installed
- Dynamically configure the environment at runtime
- Configurable code storage directory
Prerequisites
- Node.js installed
- One of the following:
- Conda installed with desired Conda environment created
- Python virtualenv
- UV virtualenv
Setup
- Clone this repository:
git clone https://github.com/bazinga012/mcp_code_executor.git
- Navigate to the project directory:
cd mcp_code_executor
- Install the Node.js dependencies:
npm install
- Build the project:
npm run build
Configuration
To configure the MCP Code Executor server, add the following to your MCP servers configuration file:
Using Node.js
{
"mcpServers": {
"mcp-code-executor": {
"command": "node",
"args": [
"/path/to/mcp_code_executor/build/index.js"
],
"env": {
"CODE_STORAGE_DIR": "/path/to/code/storage",
"ENV_TYPE": "conda",
"CONDA_ENV_NAME": "your-conda-env"
}
}
}
}
Using Docker
{
"mcpServers": {
"mcp-code-executor": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"mcp-code-executor"
]
}
}
}
Note: The Dockerfile has been tested with the venv-uv environment type only. Other environment types may require additional configuration.
Environment Variables
Required Variables
CODE_STORAGE_DIR
: Directory where the generated code will be stored
Environment Type (choose one setup)
-
For Conda:
ENV_TYPE
: Set toconda
CONDA_ENV_NAME
: Name of the Conda environment to use
-
For Standard Virtualenv:
ENV_TYPE
: Set tovenv
VENV_PATH
: Path to the virtualenv directory
-
For UV Virtualenv:
ENV_TYPE
: Set tovenv-uv
UV_VENV_PATH
: Path to the UV virtualenv directory
Available Tools
The MCP Code Executor provides the following tools to LLMs:
1. execute_code
Executes Python code in the configured environment. Best for short code snippets.
{
"name": "execute_code",
"arguments": {
"code": "import numpy as np\nprint(np.random.rand(3,3))",
"filename": "matrix_gen"
}
}
2. install_dependencies
Installs Python packages in the environment.
{
"name": "install_dependencies",
"arguments": {
"packages": [
"numpy",
"pandas",
"matplotlib"
]
}
}
3. check_installed_packages
Checks if packages are already installed in the environment.
{
"name": "check_installed_packages",
"arguments": {
"packages": [
"numpy",
"pandas",
"non_existent_package"
]
}
}
4. configure_environment
Dynamically changes the environment configuration.
{
"name": "configure_environment",
"arguments": {
"type": "conda",
"conda_name": "new_env_name"
}
}
5. get_environment_config
Gets the current environment configuration.
{
"name": "get_environment_config",
"arguments": {}
}
6. initialize_code_file
Creates a new Python file with initial content. Use this as the first step for longer code that may exceed token limits.
{
"name": "initialize_code_file",
"arguments": {
"content": "def main():\n print('Hello, world!')\n\nif __name__ == '__main__':\n main()",
"filename": "my_script"
}
}
7. append_to_code_file
Appends content to an existing Python code file. Use this to add more code to a file created with initialize_code_file.
{
"name": "append_to_code_file",
"arguments": {
"file_path": "/path/to/code/storage/my_script_abc123.py",
"content": "\ndef another_function():\n print('This was appended to the file')\n"
}
}
8. execute_code_file
Executes an existing Python file. Use this as the final step after building up code with initialize_code_file and append_to_code_file.
{
"name": "execute_code_file",
"arguments": {
"file_path": "/path/to/code/storage/my_script_abc123.py"
}
}
9. read_code_file
Reads the content of an existing Python code file. Use this to verify the current state of a file before appending more content or executing it.
{
"name": "read_code_file",
"arguments": {
"file_path": "/path/to/code/storage/my_script_abc123.py"
}
}
Usage
Once configured, the MCP Code Executor will allow LLMs to execute Python code by generating a file in the specified CODE_STORAGE_DIR
and running it within the configured environment.
LLMs can generate and execute code by referencing this MCP server in their prompts.
Handling Large Code Blocks
For larger code blocks that might exceed LLM token limits, use the incremental code generation approach:
- Initialize a file with the basic structure using
initialize_code_file
- Add more code in subsequent calls using
append_to_code_file
- Verify the file content if needed using
read_code_file
- Execute the complete code using
execute_code_file
This approach allows LLMs to write complex, multi-part code without running into token limitations.
Backward Compatibility
This package maintains backward compatibility with earlier versions. Users of previous versions who only specified a Conda environment will continue to work without any changes to their configuration.
Contributing
Contributions are welcome! Please open an issue or submit a pull request.
License
This project is licensed under the MIT License.