- Explore MCP Servers
- coralogix-mcp
Coralogix Mcp
What is Coralogix Mcp
Coralogix MCP is a Model Context Protocol server that connects to Coralogix logs, providing tools for AI assistants to query and analyze log data efficiently.
Use cases
Use cases include debugging applications by analyzing error logs, visualizing system interactions through sequence diagrams, and monitoring user behavior for insights.
How to use
To use Coralogix MCP, clone the repository, install dependencies using npm, and set up your environment variables in a .env file with your Coralogix API details.
Key features
Key features include log querying and analysis with Lucene syntax, advanced visualization capabilities, user activity analysis, data validation with TypeScript, and RESTful API integration.
Where to use
Coralogix MCP can be used in software development, IT operations, and any environment where log data analysis and troubleshooting are essential.
Clients Supporting MCP
The following are the main client software that supports the Model Context Protocol. Click the link to visit the official website for more information.
Overview
What is Coralogix Mcp
Coralogix MCP is a Model Context Protocol server that connects to Coralogix logs, providing tools for AI assistants to query and analyze log data efficiently.
Use cases
Use cases include debugging applications by analyzing error logs, visualizing system interactions through sequence diagrams, and monitoring user behavior for insights.
How to use
To use Coralogix MCP, clone the repository, install dependencies using npm, and set up your environment variables in a .env file with your Coralogix API details.
Key features
Key features include log querying and analysis with Lucene syntax, advanced visualization capabilities, user activity analysis, data validation with TypeScript, and RESTful API integration.
Where to use
Coralogix MCP can be used in software development, IT operations, and any environment where log data analysis and troubleshooting are essential.
Clients Supporting MCP
The following are the main client software that supports the Model Context Protocol. Click the link to visit the official website for more information.
Content
Coralogix MCP Server
This is an MCP (Model Context Protocol) server that connects to Coralogix logs, providing tools for AI assistants (like Cursor or Claude Desktop) to query and analyze log data. The server enables powerful log analysis, visualization, and troubleshooting capabilities through a simple interface.
Features
Log Querying and Analysis
- Query logs using Lucene syntax (
query_logs
) - Search for specific error messages (
search_logs_by_error
) - Find logs related to specific functions (
find_logs_by_function
) - Advanced filtering by application name and subsystem
- Customizable time ranges for queries
- Pagination and result limiting
Visualization
- Generate sequence diagrams from log flows (
generate_sequence_diagram
) - Support for Mermaid diagram syntax
- Customizable diagram titles and timestamps
- Thread-based grouping options
- Visual representation of system interactions
User Analysis
- Extract user lists from logs (
extract_users_list
) - Configurable user identifier fields
- Aggregation of user activities
- Pattern recognition in user behaviors
Data Validation and Type Safety
- Runtime validation using Zod schemas
- Strong TypeScript type checking
- Comprehensive error handling
- Input sanitization and validation
Integration Features
- RESTful API integration with Coralogix
- Environment-based configuration
- Flexible authentication handling
- Rate limiting and request optimization
Setup
-
Clone the repository (if you haven’t already).
-
Install dependencies:
npm install
-
Set up environment variables:
Create a.env
file in the project root (copy from.env.template
) and fill in your Coralogix details:# Coralogix API endpoint (Check documentation for your region) CORALOGIX_API_URL=https://api.coralogix.com/api/v2/dataprime/query # Your Coralogix API Key (Logs Query Key) CORALOGIX_API_KEY=your_api_key_here # Optional: Default application name to filter logs CORALOGIX_APP_NAME= # Optional: Default subsystem name to filter logs CORALOGIX_SUBSYSTEM_NAME=
-
Build the TypeScript code:
npm run build
Available Tools
1. Query Logs
Query Coralogix logs using Lucene syntax:
{
query: string; // Lucene query string
timeframe: string; // e.g., "last 24h", "last 7d"
applicationName?: string;
subsystemName?: string;
limit?: number;
offset?: number; // For pagination
sortBy?: string; // Field to sort by
sortOrder?: 'asc' | 'desc';
}
2. Search Logs by Error
Search for specific error messages with context:
{
errorMessage: string; // Error message to search for
timeframe: string; // e.g., "last 24h", "last 7d"
includeStackTrace?: boolean;
contextLines?: number; // Number of lines before/after error
severity?: string; // Error severity level
}
3. Find Logs by Function
Find logs related to specific functions with advanced filtering:
{
functionName: string; // Function name to search for
filePath?: string; // Optional file path
timeframe?: string; // e.g., "last 24h", "last 7d"
includeParams?: boolean; // Include function parameters
includeReturns?: boolean; // Include return values
stackDepth?: number; // Stack trace depth
}
4. Generate Sequence Diagram
Generate Mermaid sequence diagrams from log flows:
{
query: string; // Lucene query to filter logs
timeframe: string; // e.g., "last 24h", "last 7d"
title?: string; // Diagram title
showTimestamps?: boolean;
groupByThread?: boolean;
excludePatterns?: string[]; // Patterns to exclude
includePatterns?: string[]; // Patterns to include
style?: {
theme?: string; // Diagram theme
wrap?: boolean; // Text wrapping
boxed?: boolean; // Box around participants
}
}
5. Extract Users List
Extract and analyze user information from logs:
{
timeframe: string; // e.g., "last 24h", "last 7d"
query: string; // Lucene query to filter logs
userIdentifierField?: string; // Field containing user ID
aggregations?: { // Optional aggregations
byAction?: boolean;
byTimestamp?: boolean;
byStatus?: boolean;
};
includeMetadata?: boolean; // Include user metadata
}
Development
Running in Development Mode
npm run dev
Testing
# Run unit tests
npm test
# Run tests with coverage
npm run test:coverage
# Run integration tests
npm run test:integration
Debugging
The server supports various debug modes:
# Enable debug logging
DEBUG=coralogix-mcp:* npm run dev
# Debug specific components
DEBUG=coralogix-mcp:api npm run dev
DEBUG=coralogix-mcp:diagram npm run dev
Project Structure
src/ ├── index.ts # Main server entry point ├── coralogix-client.ts # Coralogix API client ├── sequence-diagram.ts # Sequence diagram generation ├── types.ts # TypeScript interfaces and Zod schemas ├── utils/ │ ├── validation.ts # Input validation utilities │ ├── formatting.ts # Output formatting utilities │ └── errors.ts # Error handling utilities └── services/ ├── log-service.ts # Log querying service ├── diagram-service.ts # Diagram generation service └── user-service.ts # User analysis service
Error Handling
The server implements comprehensive error handling:
- Input validation errors
- API connection errors
- Rate limiting errors
- Authentication errors
- Processing errors
Each error returns a structured response with:
- Error code
- Human-readable message
- Suggested resolution
- Request context (where applicable)
Performance Considerations
- Implements request caching
- Optimizes large result sets
- Supports streaming for large responses
- Implements connection pooling
- Handles rate limiting gracefully
License
MIT
DevTools Supporting MCP
The following are the main code editors that support the Model Context Protocol. Click the link to visit the official website for more information.