- Explore MCP Servers
- fish-ai-agent
Fish Ai Agent
What is Fish Ai Agent
fish-ai-agent is an AI assistant platform built on Spring Boot 3 and Java 21, designed to provide intelligent conversation, emotional consulting, and advanced AI agent capabilities through various integrated AI models and tools.
Use cases
Use cases include providing relationship advice, assisting users with complex inquiries, enhancing customer interaction through real-time chat, and integrating with other AI tools for improved functionality.
How to use
To use fish-ai-agent, set up the environment with Java JDK 21, Node.js, and MySQL. Deploy the application using Docker, and access the platform through its web interface for real-time conversations and emotional support.
Key features
Key features include an AI love master for relationship advice, a multi-step problem-solving AI agent, real-time streaming conversations, tool integration via MCP protocol, persistent conversation memory, and comprehensive API documentation.
Where to use
fish-ai-agent can be used in various fields such as emotional support services, customer service automation, personal assistant applications, and any domain requiring intelligent conversational agents.
Clients Supporting MCP
The following are the main client software that supports the Model Context Protocol. Click the link to visit the official website for more information.
Overview
What is Fish Ai Agent
fish-ai-agent is an AI assistant platform built on Spring Boot 3 and Java 21, designed to provide intelligent conversation, emotional consulting, and advanced AI agent capabilities through various integrated AI models and tools.
Use cases
Use cases include providing relationship advice, assisting users with complex inquiries, enhancing customer interaction through real-time chat, and integrating with other AI tools for improved functionality.
How to use
To use fish-ai-agent, set up the environment with Java JDK 21, Node.js, and MySQL. Deploy the application using Docker, and access the platform through its web interface for real-time conversations and emotional support.
Key features
Key features include an AI love master for relationship advice, a multi-step problem-solving AI agent, real-time streaming conversations, tool integration via MCP protocol, persistent conversation memory, and comprehensive API documentation.
Where to use
fish-ai-agent can be used in various fields such as emotional support services, customer service automation, personal assistant applications, and any domain requiring intelligent conversational agents.
Clients Supporting MCP
The following are the main client software that supports the Model Context Protocol. Click the link to visit the official website for more information.
Content
Yu AI Agent - 智能AI助手平台
🤖 Yu AI Agent
基于Spring Boot + Vue 3构建的现代化AI智能助手平台
📖 项目介绍
Yu AI Agent 是一个功能强大的AI智能助手平台,集成了多种AI模型和工具,提供智能对话、情感咨询、超级智能体等功能。项目采用前后端分离架构,支持实时流式对话,具有良好的扩展性和用户体验。
🎯 核心功能
- 🎭 AI恋爱大师 - 专业的情感咨询助手,提供恋爱建议和情感支持
- 🧠 AI超级智能体 - 具备强大推理能力的多步骤问题解决助手
- 💬 实时对话 - 基于SSE技术的流式对话体验
- 🔧 工具集成 - 支持MCP协议,可扩展各种AI工具
- 💾 对话记忆 - 持久化对话历史,支持上下文连续对话
- 📊 API文档 - 集成Knife4j,提供完整的API文档
✨ 技术特性
- 🚀 现代化架构 - Spring Boot 3 + Vue 3 + Vite
- 🤖 多模型支持 - 阿里云百炼、Ollama等多种AI模型
- 🔄 流式响应 - Server-Sent Events实时流式对话
- 🛠️ 工具扩展 - MCP协议支持,可接入各种AI工具
- 📱 响应式设计 - 完美适配桌面端和移动端
- 🐳 容器化部署 - Docker支持,一键部署
- 📚 RAG支持 - 文档检索增强生成
- 🔐 安全可靠 - 完善的错误处理和安全机制
🛠️ 技术栈
后端技术栈
- 核心框架: Spring Boot 3.4.5
- Java版本: JDK 21
- AI框架: Spring AI 1.0.0-M6、LangChain4j
- AI模型: 阿里云百炼DashScope、Ollama
- 数据库: MySQL 8.0
- 文档工具: Knife4j (Swagger)
- 工具库: Hutool、Jackson、Jsoup
- 构建工具: Maven 3.9
前端技术栈
- 核心框架: Vue 3.3.4
- 构建工具: Vite 4.4.9
- UI组件: Element Plus 2.3.9
- 路由管理: Vue Router 4.2.4
- HTTP客户端: Axios 1.4.0
- 开发工具: TypeScript、ESLint
基础设施
- 容器化: Docker + Docker Compose
- Web服务器: Nginx
- 数据库: MySQL 8.0
- 缓存: 内存缓存
- 协议支持: MCP (Model Context Protocol)
📦 快速开始
环境要求
- Java: JDK 21+
- Node.js: 16.0.0+
- MySQL: 8.0+
- Maven: 3.6+
- Docker: 20.10+ (可选)
1. 克隆项目
git clone https://github.com/Fishstarpro/yu-ai-agent.git
cd yu-ai-agent
2. 数据库初始化
# 创建数据库
mysql -u root -p < sql/create.sql
3. 后端启动
# 配置application-local.yml中的数据库连接和AI模型API密钥
# 启动后端服务
mvn spring-boot:run
后端服务将在 http://localhost:8112
启动
4. 前端启动
cd yu-ai-agent-frontend
# 安装依赖
npm install
# 启动开发服务器
npm run dev
前端服务将在 http://localhost:3000
启动
5. 访问应用
- 前端界面: http://localhost:3000
- API文档: http://localhost:8112/api/doc.html
- 健康检查: http://localhost:8112/api/health
🐳 Docker部署
使用Docker Compose(推荐)
# 创建docker-compose.yml文件
version: '3.8'
services:
mysql:
image: mysql:8.0
environment:
MYSQL_ROOT_PASSWORD: your_password
MYSQL_DATABASE: yu_ai_agent
ports:
- "3306:3306"
volumes:
- ./sql/create.sql:/docker-entrypoint-initdb.d/create.sql
backend:
build: .
ports:
- "8112:8112"
depends_on:
- mysql
environment:
SPRING_PROFILES_ACTIVE: prod
frontend:
build: ./yu-ai-agent-frontend
ports:
- "80:80"
depends_on:
- backend
# 启动所有服务
docker-compose up -d
单独构建镜像
# 构建后端镜像
docker build -t yu-ai-agent-backend .
# 构建前端镜像
cd yu-ai-agent-frontend
docker build -t yu-ai-agent-frontend .
# 运行容器
docker run -d -p 8112:8112 yu-ai-agent-backend
docker run -d -p 80:80 yu-ai-agent-frontend
🏗️ 项目结构
yu-ai-agent/ ├── src/main/java/com/yxc/yuaiagent/ │ ├── agent/ # AI智能体实现 │ ├── app/ # 应用层服务 │ ├── controller/ # REST API控制器 │ ├── config/ # 配置类 │ ├── tools/ # AI工具实现 │ ├── rag/ # RAG检索增强 │ ├── chatmemory/ # 对话记忆管理 │ └── YuAiAgentApplication.java ├── src/main/resources/ │ ├── application.yml # 应用配置 │ └── document/ # RAG文档库 ├── yu-ai-agent-frontend/ # 前端项目 │ ├── src/ │ │ ├── components/ # Vue组件 │ │ ├── views/ # 页面视图 │ │ ├── router/ # 路由配置 │ │ └── utils/ # 工具函数 │ ├── public/ # 静态资源 │ └── dist/ # 构建输出 ├── sql/ # 数据库脚本 ├── yu-image-search-mcp/ # MCP图像搜索工具 ├── Dockerfile # 后端Docker配置 ├── docker-compose.yml # Docker编排配置 └── README.md # 项目文档
🔧 配置说明
后端配置
在 src/main/resources/application-local.yml
中配置:
spring:
datasource:
url: jdbc:mysql://localhost:3306/yu_ai_agent
username: your_username
password: your_password
ai:
dashscope:
api-key: your_dashscope_api_key
ollama:
base-url: http://localhost:11434
前端配置
在 yu-ai-agent-frontend/vite.config.js
中配置API代理:
server: {
port: 3000,
proxy: {
"/api": {
target: "http://localhost:8112",
changeOrigin: true,
},
},
}
📚 API文档
项目集成了Knife4j,提供完整的API文档:
主要API接口
接口 | 方法 | 描述 |
---|---|---|
/api/health |
GET | 健康检查 |
/api/ai/love_app/chat/sse |
GET | AI恋爱大师流式对话 |
/api/ai/manus/chat |
GET | AI超级智能体对话 |
🤝 贡献指南
- Fork 本仓库
- 创建特性分支 (
git checkout -b feature/AmazingFeature
) - 提交更改 (
git commit -m 'Add some AmazingFeature'
) - 推送到分支 (
git push origin feature/AmazingFeature
) - 打开 Pull Request
开发规范
- 后端遵循Spring Boot最佳实践
- 前端使用Vue 3 Composition API
- 代码注释使用中文
- 提交信息遵循 Conventional Commits
🐛 问题反馈
如果您在使用过程中遇到问题,请通过以下方式反馈:
- 查看 Issues 是否已有相关问题
- 创建新的 Issue 并详细描述问题
- 提供复现步骤和环境信息
📄 许可证
本项目采用 MIT 许可证 - 查看 LICENSE 文件了解详情。
🙏 致谢
感谢以下开源项目和服务:
- Spring Boot - 企业级Java应用框架
- Spring AI - AI应用开发框架
- Vue.js - 渐进式JavaScript框架
- Element Plus - Vue 3组件库
- 阿里云百炼 - AI模型服务
- LangChain4j - Java AI应用框架
📞 联系方式
- 项目维护者: fishstar
- 邮箱: [email protected]
- 项目地址: https://github.com/Fishstarpro/yu-ai-agent
如果这个项目对您有帮助,请给它一个 ⭐️
Made with ❤️ by fishstar
Dev Tools Supporting MCP
The following are the main code editors that support the Model Context Protocol. Click the link to visit the official website for more information.