- Explore MCP Servers
- light-research-mcp
Light Research Mcp
What is Light Research Mcp
A lightweight MCP (Model Context Protocol) server designed for orchestrating Large Language Models (LLMs) that provides efficient web content search and extraction using DuckDuckGo and GitHub. It allows LLMs to retrieve and process clean, structured information from the web.
Use cases
Ideal for developers and researchers looking to implement advanced features in LLMs, including searching for programming examples on GitHub, extracting relevant content from web pages, and generating LLM-friendly output in Markdown format. It supports various workflows for interactive searching and content extraction.
How to use
After installation, users can run the CLI tool in different modes, such as MCP server for LLM integration, search mode for querying DuckDuckGo, GitHub code search, or extracting content from specific URLs. The tool responds with structured JSON results or clean Markdown output.
Key features
Key features include Model Context Protocol server support, efficient content extraction using Playwright and Mozilla Readability, GitHub code searching capabilities, Markdown sanitization, rate limiting compliance with DuckDuckGo, and full TypeScript implementation for type safety.
Where to use
This tool can be used on macOS, Linux, and WSL environments, making it suitable for a variety of development setups. It can benefit researchers, software engineers, and anyone needing easy access to web resources for machine learning models or documentation assistance.
Overview
What is Light Research Mcp
A lightweight MCP (Model Context Protocol) server designed for orchestrating Large Language Models (LLMs) that provides efficient web content search and extraction using DuckDuckGo and GitHub. It allows LLMs to retrieve and process clean, structured information from the web.
Use cases
Ideal for developers and researchers looking to implement advanced features in LLMs, including searching for programming examples on GitHub, extracting relevant content from web pages, and generating LLM-friendly output in Markdown format. It supports various workflows for interactive searching and content extraction.
How to use
After installation, users can run the CLI tool in different modes, such as MCP server for LLM integration, search mode for querying DuckDuckGo, GitHub code search, or extracting content from specific URLs. The tool responds with structured JSON results or clean Markdown output.
Key features
Key features include Model Context Protocol server support, efficient content extraction using Playwright and Mozilla Readability, GitHub code searching capabilities, Markdown sanitization, rate limiting compliance with DuckDuckGo, and full TypeScript implementation for type safety.
Where to use
This tool can be used on macOS, Linux, and WSL environments, making it suitable for a variety of development setups. It can benefit researchers, software engineers, and anyone needing easy access to web resources for machine learning models or documentation assistance.
Content
LLM Researcher
A lightweight MCP (Model Context Protocol) server for LLM orchestration that provides efficient web content search and extraction capabilities. This CLI tool enables LLMs to search DuckDuckGo and extract clean, LLM-friendly content from web pages.
Built with TypeScript, tsup, and vitest for modern development experience.
Features
- MCP Server Support: Provides Model Context Protocol server for LLM integration
- Free Operation: Uses DuckDuckGo HTML endpoint (no API costs)
- GitHub Code Search: Search GitHub repositories for code examples and implementation patterns
- Smart Content Extraction: Playwright + @mozilla/readability for clean content
- LLM-Optimized Output: Sanitized Markdown (h1-h3, bold, italic, links only)
- Rate Limited: Respects DuckDuckGo with 1 req/sec limit
- Cross-Platform: Works on macOS, Linux, and WSL
- Multiple Modes: CLI, MCP server, search, direct URL, and interactive modes
- Type Safe: Full TypeScript implementation with strict typing
- Modern Tooling: Built with tsup bundler and vitest testing
Installation
Prerequisites
- Node.js 20.0.0 or higher
- No local Chrome installation required (uses Playwright’s bundled Chromium)
Setup
# Clone or download the project
cd light-research-mcp
# Install dependencies (using pnpm)
pnpm install
# Build the project
pnpm build
# Install Playwright browsers
pnpm install-browsers
# Optional: Link globally for system-wide access
pnpm link --global
Usage
MCP Server Mode
Use as a Model Context Protocol server to provide search and content extraction tools to LLMs:
# Start MCP server (stdio transport)
llmresearcher --mcp
# The server provides these tools to MCP clients:
# - github_code_search: Search GitHub repositories for code
# - duckduckgo_web_search: Search the web with DuckDuckGo
# - extract_content: Extract detailed content from URLs
Setting up with Claude Code
# Add as an MCP server to Claude Code
claude mcp add light-research-mcp /path/to/light-research-mcp/dist/bin/llmresearcher.js --mcp
# Or with project scope for team sharing
claude mcp add light-research-mcp -s project /path/to/light-research-mcp/dist/bin/llmresearcher.js --mcp
# List configured servers
claude mcp list
# Check server status
claude mcp get light-research-mcp
MCP Tool Usage Examples
Once configured, you can use these tools in Claude:
> Search for React hooks examples on GitHub Tool: github_code_search Query: "useState useEffect hooks language:javascript" > Search for TypeScript best practices Tool: duckduckgo_web_search Query: "TypeScript best practices 2024" Locale: us-en (or wt-wt for no region) > Extract content from a search result Tool: extract_content URL: https://example.com/article-from-search-results
Command Line Interface
# Search mode - Search DuckDuckGo and interactively browse results
llmresearcher "machine learning transformers"
# GitHub Code Search mode - Search GitHub for code
llmresearcher -g "useState hooks language:typescript"
# Direct URL mode - Extract content from specific URL
llmresearcher -u https://example.com/article
# Interactive mode - Enter interactive search session
llmresearcher
# Verbose logging - See detailed operation logs
llmresearcher -v "search query"
# MCP Server mode - Start as Model Context Protocol server
llmresearcher --mcp
Development
Scripts
# Build the project
pnpm build
# Build in watch mode (for development)
pnpm dev
# Run tests
pnpm test
# Run tests in CI mode (single run)
pnpm test:run
# Type checking
pnpm type-check
# Clean build artifacts
pnpm clean
# Install Playwright browsers
pnpm install-browsers
Interactive Commands
When in search results view:
- 1-10: Select a result by number
- b or back: Return to search results
- open <n>: Open result #n in external browser
- q or quit: Exit the program
When viewing content:
- b or back: Return to search results
- /<term>: Search for term within the extracted content
- open: Open current page in external browser
- q or quit: Exit the program
Configuration
Environment Variables
Create a .env
file in the project root:
USER_AGENT=Mozilla/5.0 (compatible; LLMResearcher/1.0) TIMEOUT=30000 MAX_RETRIES=3 RATE_LIMIT_DELAY=1000 CACHE_ENABLED=true MAX_RESULTS=10
Configuration File
Create ~/.llmresearcherrc
in your home directory:
{
"userAgent": "Mozilla/5.0 (compatible; LLMResearcher/1.0)",
"timeout": 30000,
"maxRetries": 3,
"rateLimitDelay": 1000,
"cacheEnabled": true,
"maxResults": 10
}
Configuration Options
Option | Default | Description |
---|---|---|
userAgent |
Mozilla/5.0 (compatible; LLMResearcher/1.0) |
User agent for HTTP requests |
timeout |
30000 |
Request timeout in milliseconds |
maxRetries |
3 |
Maximum retry attempts for failed requests |
rateLimitDelay |
1000 |
Delay between requests in milliseconds |
cacheEnabled |
true |
Enable/disable local caching |
maxResults |
10 |
Maximum search results to display |
Architecture
Core Components
-
MCPResearchServer (
src/mcp-server.ts
)- Model Context Protocol server implementation
- Three main tools: github_code_search, duckduckgo_web_search, extract_content
- JSON-based responses for LLM consumption
-
DuckDuckGoSearcher (
src/search.ts
)- HTML scraping of DuckDuckGo search results with locale support
- URL decoding for
/l/?uddg=
format links - Rate limiting and retry logic
-
GitHubCodeSearcher (
src/github-code-search.ts
)- GitHub Code Search API integration via gh CLI
- Advanced query support with language, repo, and file filters
- Authentication and rate limiting
-
ContentExtractor (
src/extractor.ts
)- Playwright-based page rendering with resource blocking
- @mozilla/readability for main content extraction
- DOMPurify sanitization and Markdown conversion
-
CLIInterface (
src/cli.ts
)- Interactive command-line interface
- Search result navigation
- Content viewing and text search
-
Configuration (
src/config.ts
)- Environment and RC file configuration loading
- Verbose logging support
Content Processing Pipeline
MCP Server Mode
- Search:
- DuckDuckGo: HTML endpoint → Parse results → JSON response with pagination
- GitHub: Code Search API → Format results → JSON response with code snippets
- Extract: URL from search results → Playwright navigation → Content extraction
- Process: @mozilla/readability → DOMPurify sanitization → Clean JSON output
- Output: Structured JSON for LLM consumption
CLI Mode
- Search: DuckDuckGo HTML endpoint → Parse results → Display numbered list
- Extract: Playwright navigation → Resource blocking → JS rendering
- Process: @mozilla/readability → DOMPurify sanitization → Turndown Markdown
- Output: Clean Markdown with h1-h3, bold, italic, links only
Security Features
- Resource Blocking: Prevents loading of images, CSS, fonts for speed and security
- Content Sanitization: DOMPurify removes scripts, iframes, and dangerous elements
- Limited Markdown: Only allows safe formatting elements (h1-h3, strong, em, a)
- Rate Limiting: Respects DuckDuckGo’s rate limits with exponential backoff
Examples
MCP Server Usage with Claude Code
1. GitHub Code Search
You: "Find React hook examples for state management" Claude uses github_code_search tool: { "query": "useState useReducer state management language:javascript", "results": [ { "title": "facebook/react/packages/react/src/ReactHooks.js", "url": "https://raw.githubusercontent.com/facebook/react/main/packages/react/src/ReactHooks.js", "snippet": "function useState(initialState) {\n return dispatcher.useState(initialState);\n}" } ], "pagination": { "currentPage": 1, "hasNextPage": true, "nextPageToken": "2" } }
2. Web Search with Locale
You: "Search for Vue.js tutorials in Japanese" Claude uses duckduckgo_web_search tool: { "query": "Vue.js チュートリアル 入門", "locale": "jp-jp", "results": [ { "title": "Vue.js入門ガイド", "url": "https://example.com/vue-tutorial", "snippet": "Vue.jsの基本的な使い方を学ぶチュートリアル..." } ] }
3. Content Extraction
You: "Extract the full content from that Vue.js tutorial" Claude uses extract_content tool: { "url": "https://example.com/vue-tutorial", "title": "Vue.js入門ガイド", "extractedAt": "2024-01-15T10:30:00.000Z", "content": "# Vue.js入門ガイド\n\nVue.jsは...\n\n## インストール\n\n..." }
CLI Examples
Basic Search
$ llmresearcher "python web scraping"
🔍 Search Results:
══════════════════════════════════════════════════
1. Python Web Scraping Tutorial
URL: https://realpython.com/python-web-scraping-practical-introduction/
Complete guide to web scraping with Python using requests and Beautiful Soup...
2. Web Scraping with Python - BeautifulSoup and requests
URL: https://www.dataquest.io/blog/web-scraping-python-tutorial/
Learn how to scrape websites with Python, Beautiful Soup, and requests...
══════════════════════════════════════════════════
Commands: [1-10] select result | b) back | q) quit | open <n>) open in browser
> 1
📥 Extracting content from: Python Web Scraping Tutorial
📄 Content:
══════════════════════════════════════════════════
**Python Web Scraping Tutorial**
Source: https://realpython.com/python-web-scraping-practical-introduction/
Extracted: 2024-01-15T10:30:00.000Z
──────────────────────────────────────────────────
# Python Web Scraping: A Practical Introduction
Web scraping is the process of collecting and parsing raw data from the web...
## What Is Web Scraping?
Web scraping is a technique to automatically access and extract large amounts...
══════════════════════════════════════════════════
Commands: b) back to results | /<term>) search in text | q) quit | open) open in browser
> /beautiful soup
🔍 Found 3 matches for "beautiful soup":
──────────────────────────────────────────────────
Line 15: Beautiful Soup is a Python library for parsing HTML and XML documents.
Line 42: from bs4 import BeautifulSoup
Line 67: soup = BeautifulSoup(html_content, 'html.parser')
Direct URL Mode
$ llmresearcher -u https://docs.python.org/3/tutorial/
📄 Content:
══════════════════════════════════════════════════
**The Python Tutorial**
Source: https://docs.python.org/3/tutorial/
Extracted: 2024-01-15T10:35:00.000Z
──────────────────────────────────────────────────
# The Python Tutorial
Python is an easy to learn, powerful programming language...
## An Informal Introduction to Python
In the following examples, input and output are distinguished...
Verbose Mode
$ llmresearcher -v "nodejs tutorial"
[VERBOSE] Searching: https://duckduckgo.com/html/?q=nodejs%20tutorial&kl=us-en
[VERBOSE] Response: 200 in 847ms
[VERBOSE] Parsed 10 results
[VERBOSE] Launching browser...
[VERBOSE] Blocking resource: https://example.com/style.css
[VERBOSE] Blocking resource: https://example.com/image.png
[VERBOSE] Navigating to page...
[VERBOSE] Page loaded in 1243ms
[VERBOSE] Processing content with Readability...
[VERBOSE] Readability extraction successful
[VERBOSE] Closing browser...
Testing
Running Tests
# Run tests in watch mode
pnpm test
# Run tests once (CI mode)
pnpm test:run
# Run tests with coverage
pnpm test -- --coverage
Test Coverage
The test suite includes:
-
Unit Tests: Individual component testing
search.test.ts
: DuckDuckGo search functionality, URL decoding, rate limitingextractor.test.ts
: Content extraction, Markdown conversion, resource managementconfig.test.ts
: Configuration validation and environment handling
-
Integration Tests: End-to-end workflow testing
integration.test.ts
: Complete search-to-extraction workflows, error handling, cleanup
Test Features
- Fast: Powered by vitest for quick feedback
- Type-safe: Full TypeScript support in tests
- Isolated: Each test cleans up its resources
- Comprehensive: Covers search, extraction, configuration, and integration scenarios
Troubleshooting
Common Issues
“Browser not found” Error
pnpm install-browsers
Rate Limiting Issues
- The tool automatically handles rate limiting with 1-second delays
- If you encounter 429 errors, the tool will automatically retry with exponential backoff
Content Extraction Failures
- Some sites may block automated access
- The tool includes fallback extraction methods (main → body content)
- Use verbose mode (
-v
) to see detailed error information
Permission Denied (Unix/Linux)
chmod +x bin/llmresearcher.js
Performance Optimization
The tool is optimized for speed:
- Resource Blocking: Automatically blocks images, CSS, fonts
- Network Idle: Waits for JavaScript to complete rendering
- Content Caching: Supports local caching to avoid repeated requests
- Minimal Dependencies: Uses lightweight, focused libraries
Development
Project Structure
light-research-mcp/ ├── dist/ # Built JavaScript files (generated) │ ├── bin/ │ │ └── llmresearcher.js # CLI entry point (executable) │ └── *.js # Compiled TypeScript modules ├── src/ # TypeScript source files │ ├── bin.ts # CLI entry point │ ├── index.ts # Main LLMResearcher class │ ├── mcp-server.ts # MCP server implementation │ ├── search.ts # DuckDuckGo search implementation │ ├── github-code-search.ts # GitHub Code Search implementation │ ├── extractor.ts # Content extraction with Playwright │ ├── cli.ts # Interactive CLI interface │ ├── config.ts # Configuration management │ └── types.ts # TypeScript type definitions ├── test/ # Test files (vitest) │ ├── search.test.ts # Search functionality tests │ ├── extractor.test.ts # Content extraction tests │ ├── config.test.ts # Configuration tests │ ├── mcp-locale.test.ts # MCP locale functionality tests │ ├── mcp-content-extractor.test.ts # MCP content extractor tests │ └── integration.test.ts # End-to-end integration tests ├── tsconfig.json # TypeScript configuration ├── tsup.config.ts # Build configuration ├── vitest.config.ts # Test configuration ├── package.json └── README.md
Dependencies
Runtime Dependencies
- @modelcontextprotocol/sdk: Model Context Protocol server implementation
- @mozilla/readability: Content extraction from HTML
- cheerio: HTML parsing for search results
- commander: CLI argument parsing
- dompurify: HTML sanitization
- dotenv: Environment variable loading
- jsdom: DOM manipulation for server-side processing
- playwright: Browser automation for JS rendering
- turndown: HTML to Markdown conversion
Development Dependencies
- typescript: TypeScript compiler
- tsup: Fast TypeScript bundler
- vitest: Fast unit test framework
- @types/*: TypeScript type definitions
License
MIT License - see LICENSE file for details.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
Roadmap
Planned Features
- Enhanced MCP Tools: Additional specialized search tools for documentation, APIs, etc.
- Caching Layer: SQLite-based URL → Markdown caching with 24-hour TTL
- Search Engine Abstraction: Support for Brave Search, Bing, and other engines
- Content Summarization: Optional AI-powered content summarization
- Export Formats: JSON, plain text, and other output formats
- Batch Processing: Process multiple URLs from file input
- SSE Transport: Support for Server-Sent Events MCP transport
Performance Improvements
- Parallel Processing: Concurrent content extraction for multiple results
- Smart Caching: Intelligent cache invalidation based on content freshness
- Memory Optimization: Streaming content processing for large documents