MCP ExplorerExplorer

Mcp Ai Bridge

@fakolion 8 days ago
1 MIT
FreeCommunity
AI Systems
MCP AI Bridge connects Claude Code with OpenAI and Google Gemini APIs securely.

Overview

What is Mcp Ai Bridge

MCP AI Bridge is a secure server that integrates OpenAI and Google Gemini APIs through the Model Context Protocol (MCP). It facilitates communication between different AI models while ensuring high security and robust error handling.

Use cases

MCP AI Bridge can be used for a variety of applications including automated question-answering systems, chatbot development, content generation, and any scenario requiring interaction with advanced AI models while maintaining security and compliance with content regulations.

How to use

To use MCP AI Bridge, clone the directory, install dependencies, and configure your API keys through environment variables. You can then query OpenAI or Gemini models using the provided tools in Claude Code, specifying prompts and parameters as needed.

Key features

Key features include multi-layer input validation, content filtering to block harmful content, prompt injection detection, rate limiting to prevent abuse, and flexible configuration options for temperature and model selection. It also supports structured logging and allows for granular security controls.

Where to use

MCP AI Bridge can be employed in environments where secure interactions with AI models are required, such as in enterprise applications, educational tools, and any application that requires both flexibility and robust security measures.

Content

MCP AI Bridge

A secure Model Context Protocol (MCP) server that bridges Claude Code with OpenAI and Google Gemini APIs.

AI Bridge MCP server

Features

  • OpenAI Integration: Access GPT-4o, GPT-4o Mini, GPT-4 Turbo, GPT-4, and reasoning models (o1, o1-mini, o1-pro, o3-mini)
  • Gemini Integration: Access Gemini 1.5 Pro, Gemini 1.5 Flash, and vision models with latest capabilities
  • Security Features:
    • Enhanced Input Validation: Multi-layer validation with sanitization
    • Content Filtering: Blocks explicit, harmful, and illegal content
    • Prompt Injection Detection: Identifies and blocks manipulation attempts
    • Rate Limiting: Prevents API abuse with configurable limits
    • Secure Error Handling: No sensitive information exposure
    • API Key Validation: Format validation for API keys
    • Configurable Security Levels: Basic, Moderate, and Strict modes
  • Robust Error Handling: Specific error types with detailed messages
  • Structured Logging: Winston-based logging with configurable levels
  • Flexible Configuration: Control temperature and model selection for each request

Installation

  1. Clone or copy the mcp-ai-bridge directory to your preferred location

  2. Install dependencies:

cd mcp-ai-bridge
npm install
  1. Configure your API keys using ONE of these methods:

    Option A: Use global .env file in your home directory (Recommended)

    • Create or edit ~/.env file
    • Add your API keys:
      OPENAI_API_KEY=your_openai_api_key_here
      GOOGLE_AI_API_KEY=your_google_ai_api_key_here
      

    Option B: Use local .env file

    • Create a .env file in the mcp-ai-bridge directory:
      cp .env.example .env
      
    • Add your API keys to this local .env file

    Option C: Use environment variables in Claude Code config

    • Configure directly in the Claude Code settings (see Configuration section)

The server will check for environment variables in this order:

  1. ~/.env (your home directory)

  2. ./.env (local to mcp-ai-bridge directory)

  3. System environment variables

  4. Optional Configuration Variables:

    # Logging level (error, warn, info, debug)
    LOG_LEVEL=info
    
    # Server identification
    MCP_SERVER_NAME=AI Bridge
    MCP_SERVER_VERSION=1.0.0
    
    # Security Configuration
    SECURITY_LEVEL=moderate              # disabled, basic, moderate, strict
    
    # Content Filtering (granular controls)
    BLOCK_EXPLICIT_CONTENT=true         # Master content filter toggle
    BLOCK_VIOLENCE=true                  # Block violent content
    BLOCK_ILLEGAL_ACTIVITIES=true       # Block illegal activity requests
    BLOCK_ADULT_CONTENT=true             # Block adult/sexual content
    
    # Injection Detection (granular controls)
    DETECT_PROMPT_INJECTION=true        # Master injection detection toggle
    DETECT_SYSTEM_PROMPTS=true           # Detect system role injections
    DETECT_INSTRUCTION_OVERRIDE=true     # Detect "ignore instructions" attempts
    
    # Input Sanitization (granular controls)
    SANITIZE_INPUT=true                  # Master sanitization toggle
    REMOVE_SCRIPTS=true                  # Remove script tags and JS
    LIMIT_REPEATED_CHARS=true            # Limit DoS via repeated characters
    
    # Performance & Flexibility
    ENABLE_PATTERN_CACHING=true          # Cache compiled patterns for speed
    MAX_PROMPT_LENGTH_FOR_DEEP_SCAN=1000 # Skip deep scanning for long prompts
    ALLOW_EDUCATIONAL_CONTENT=false      # Whitelist educational content
    WHITELIST_PATTERNS=                  # Comma-separated regex patterns to allow
    

Configuration in Claude Code

Method 1: Using Claude Code CLI (Recommended)

Use the interactive MCP setup wizard:

claude mcp add

Or add the server configuration directly:

claude mcp add-json ai-bridge '{"command": "node", "args": ["/path/to/mcp-ai-bridge/src/index.js"]}'

Method 2: Manual Configuration

Add the following to your Claude Code MCP settings. The configuration file location depends on your environment:

  • Claude Code CLI: Uses settings.json in the configuration directory (typically ~/.claude/ or $CLAUDE_CONFIG_DIR)
  • Claude Desktop: Uses ~/.claude/claude_desktop_config.json

For Claude Desktop compatibility:

{
  "mcpServers": {
    "ai-bridge": {
      "command": "node",
      "args": [
        "/path/to/mcp-ai-bridge/src/index.js"
      ],
      "env": {
        "OPENAI_API_KEY": "your_openai_api_key",
        "GOOGLE_AI_API_KEY": "your_google_ai_api_key"
      }
    }
  }
}

Alternatively, if you have the .env file configured, you can omit the env section:

{
  "mcpServers": {
    "ai-bridge": {
      "command": "node",
      "args": [
        "/path/to/mcp-ai-bridge/src/index.js"
      ]
    }
  }
}

Method 3: Import from Claude Desktop

If you already have this configured in Claude Desktop, you can import the configuration:

claude mcp add-from-claude-desktop

Available Tools

1. ask_openai

Query OpenAI models with full validation and security features.

Parameters:

  • prompt (required): The question or prompt to send (max 10,000 characters)
  • model (optional): Choose from ‘gpt-4o’, ‘gpt-4o-mini’, ‘gpt-4-turbo’, ‘gpt-4’, ‘o1’, ‘o1-mini’, ‘o1-pro’, ‘o3-mini’, ‘chatgpt-4o-latest’, and other available models (default: ‘gpt-4o-mini’)
  • temperature (optional): Control randomness (0-2, default: 0.7)

Security Features:

  • Input validation for prompt length and type
  • Temperature range validation
  • Model validation
  • Rate limiting (100 requests per minute by default)

2. ask_gemini

Query Google Gemini models with full validation and security features.

Parameters:

  • prompt (required): The question or prompt to send (max 10,000 characters)
  • model (optional): Choose from ‘gemini-1.5-pro-latest’, ‘gemini-1.5-pro-002’, ‘gemini-1.5-pro’, ‘gemini-1.5-flash-latest’, ‘gemini-1.5-flash’, ‘gemini-1.5-flash-002’, ‘gemini-1.5-flash-8b’, ‘gemini-1.0-pro-vision-latest’, ‘gemini-pro-vision’ (default: ‘gemini-1.5-flash-latest’)
  • temperature (optional): Control randomness (0-1, default: 0.7)

Security Features:

  • Input validation for prompt length and type
  • Temperature range validation
  • Model validation
  • Rate limiting (100 requests per minute by default)

3. server_info

Get comprehensive server status and configuration information.

Returns:

  • Server name and version
  • Available models for each service
  • Security settings (rate limits, validation status)
  • Configuration status for each API

Usage Examples

In Claude Code, you can use these tools like:

mcp__ai-bridge__ask_openai
  prompt: "Explain the concept of recursion in programming"
  model: "gpt-4o"
  temperature: 0.5

mcp__ai-bridge__ask_gemini
  prompt: "What are the key differences between Python and JavaScript?"
  model: "gemini-1.5-flash-latest"

mcp__ai-bridge__server_info

Debugging MCP Server

If you encounter issues with the MCP server, you can use Claude Code’s debugging features:

# Enable MCP debug mode for detailed error information
claude --mcp-debug

# Check MCP server status and tools
claude
# Then use the /mcp slash command to view server details

Testing

The project includes comprehensive unit tests and security tests. To run tests:

# Run all tests (including security tests)
npm test

# Run tests in watch mode
npm run test:watch

# Run tests with coverage report
npm run test:coverage

Test Coverage

  • Unit tests for all server functionality
  • Security tests for input validation and rate limiting
  • Integration tests for API interactions
  • Error handling tests
  • Mock-based testing to avoid real API calls

Troubleshooting

Common Issues

  1. “API key not configured” error: Make sure you’ve added the correct API keys to your .env file or Claude Code config
  2. “Invalid OpenAI API key format” error: OpenAI keys must start with ‘sk-’
  3. “Rate limit exceeded” error: Wait for the rate limit window to reset (default: 1 minute)
  4. “Prompt too long” error: Keep prompts under 10,000 characters
  5. Module not found errors: Run npm install in the mcp-ai-bridge directory
  6. Permission errors: Ensure the index.js file has execute permissions
  7. Logging issues: Set LOG_LEVEL environment variable (error, warn, info, debug)

Claude Code Specific Troubleshooting

  1. MCP server not loading:

    • Use claude --mcp-debug to see detailed error messages
    • Check server configuration with /mcp slash command
    • Verify the server path is correct and accessible
    • Ensure Node.js is installed and in your PATH
  2. Configuration issues:

    • Use claude mcp add for interactive setup
    • Check CLAUDE_CONFIG_DIR environment variable if using custom config location
    • For timeouts, configure MCP_TIMEOUT and MCP_TOOL_TIMEOUT environment variables
  3. Server startup failures:

    • Check if the server process can start independently: node /path/to/mcp-ai-bridge/src/index.js
    • Verify all dependencies are installed
    • Check file permissions on the server directory

Security Features

Enhanced Security Protection

  • Multi-Layer Input Validation: Type, length, and content validation
  • Content Filtering: Blocks explicit, violent, illegal, and harmful content
  • Prompt Injection Detection: Identifies and prevents manipulation attempts including:
    • Instruction override attempts (“ignore previous instructions”)
    • System role injection (“system: act as…”)
    • Template injection ({{system}}, <|system|>, [INST])
    • Suspicious pattern detection
  • Input Sanitization: Removes control characters, scripts, and malicious patterns
  • Rate Limiting: 100 requests per minute by default to prevent API abuse
  • API Key Validation: Format validation for API keys before use
  • Secure Error Handling: No stack traces or sensitive information in error messages
  • Structured Logging: All operations are logged with appropriate levels

Security Levels

  • Basic: Minimal filtering, allows most content
  • Moderate (Default): Balanced protection with reasonable restrictions
  • Strict: Maximum protection, blocks borderline content

Granular Security Configuration

Security Levels:

  • disabled - No security checks (maximum performance)
  • basic - Essential protection only (good performance)
  • moderate - Balanced protection (default, good balance)
  • strict - Maximum protection (may impact performance)

Individual Feature Controls:

# Master toggles
SECURITY_LEVEL=moderate
BLOCK_EXPLICIT_CONTENT=true
DETECT_PROMPT_INJECTION=true
SANITIZE_INPUT=true

# Granular content filtering
BLOCK_VIOLENCE=true                  # "how to kill", violence
BLOCK_ILLEGAL_ACTIVITIES=true       # "how to hack", illegal acts
BLOCK_ADULT_CONTENT=true            # Sexual/adult content

# Granular injection detection
DETECT_SYSTEM_PROMPTS=true           # "system: act as admin"
DETECT_INSTRUCTION_OVERRIDE=true     # "ignore previous instructions"

# Granular sanitization
REMOVE_SCRIPTS=true                  # Remove <script> tags
LIMIT_REPEATED_CHARS=true           # Prevent character flooding

# Performance optimization
ENABLE_PATTERN_CACHING=true         # Cache patterns for speed
MAX_PROMPT_LENGTH_FOR_DEEP_SCAN=1000 # Skip intensive checks on long prompts

# Flexibility options
ALLOW_EDUCATIONAL_CONTENT=true      # Whitelist "research about", "explain"
WHITELIST_PATTERNS="educational,academic" # Custom regex patterns

Performance Considerations:

  • Pattern caching reduces regex compilation overhead
  • Long prompts (>1000 chars) get lighter scanning in basic mode
  • Early termination stops checking after finding issues
  • Granular controls let you disable unneeded checks

Best Practices

  • Never commit your .env file to version control
  • Keep your API keys secure and rotate them regularly
  • Consider setting usage limits on your API accounts
  • Monitor logs for unusual activity
  • Use the rate limiting feature to control costs
  • Validate the server configuration using the server_info tool

Rate Limiting

The server implements sliding window rate limiting:

  • Default: 100 requests per minute
  • Configurable via environment variables
  • Per-session tracking
  • Graceful error messages with reset time information

Tools

No tools

Comments