MCP ExplorerExplorer

Mem0mcp

@Toowireddon a month ago
1 Apache-2.0
FreeCommunity
AI Systems
Memory for AI Agents; SOTA in AI Agent Memory; Announcing OpenMemory MCP - local and secure memory management.

Overview

What is Mem0mcp

mem0mcp is a state-of-the-art memory management system designed for AI agents, providing local and secure memory capabilities to enhance the performance and personalization of AI interactions.

Use cases

Use cases for mem0mcp include building production-ready AI agents, enhancing chatbot interactions, and developing applications that require scalable long-term memory for improved user engagement.

How to use

To use mem0mcp, developers can integrate it into their AI applications by following the documentation available on the official GitHub repository. Users can also access demos and join the community through Discord for support.

Key features

Key features of mem0mcp include a 26% increase in accuracy compared to OpenAI Memory, 91% faster performance, and 90% fewer tokens required for processing, making it an efficient solution for AI memory management.

Where to use

mem0mcp can be utilized in various fields such as AI development, personalized user experiences, and applications requiring efficient memory management for AI agents.

Content

Mem0 - The Memory Layer for Personalized AI

mem0ai%2Fmem0 | Trendshift

Learn more · Join Discord · Demo · OpenMemory

Mem0 Discord Mem0 PyPI - Downloads GitHub commit activity Package version Npm package Y Combinator S24

📄 Building Production-Ready AI Agents with Scalable Long-Term Memory →

⚡ +26% Accuracy vs. OpenAI Memory • 🚀 91% Faster • 💰 90% Fewer Tokens

🔥 Research Highlights

  • +26% Accuracy over OpenAI Memory on the LOCOMO benchmark
  • 91% Faster Responses than full-context, ensuring low-latency at scale
  • 90% Lower Token Usage than full-context, cutting costs without compromise
  • Read the full paper

Introduction

Mem0 (“mem-zero”) enhances AI assistants and agents with an intelligent memory layer, enabling personalized AI interactions. It remembers user preferences, adapts to individual needs, and continuously learns over time—ideal for customer support chatbots, AI assistants, and autonomous systems.

Key Features & Use Cases

Core Capabilities:

  • Multi-Level Memory: Seamlessly retains User, Session, and Agent state with adaptive personalization
  • Developer-Friendly: Intuitive API, cross-platform SDKs, and a fully managed service option

Applications:

  • AI Assistants: Consistent, context-rich conversations
  • Customer Support: Recall past tickets and user history for tailored help
  • Healthcare: Track patient preferences and history for personalized care
  • Productivity & Gaming: Adaptive workflows and environments based on user behavior

🚀 Quickstart Guide

Choose between our hosted platform or self-hosted package:

Hosted Platform

Get up and running in minutes with automatic updates, analytics, and enterprise security.

  1. Sign up on Mem0 Platform
  2. Embed the memory layer via SDK or API keys

Self-Hosted (Open Source)

Install the sdk via pip:

pip install mem0ai

Install sdk via npm:

npm install mem0ai

Basic Usage

Mem0 requires an LLM to function, with gpt-4o-mini from OpenAI as the default. However, it supports a variety of LLMs; for details, refer to our Supported LLMs documentation.

First step is to instantiate the memory:

from openai import OpenAI
from mem0 import Memory

openai_client = OpenAI()
memory = Memory()

def chat_with_memories(message: str, user_id: str = "default_user") -> str:
    # Retrieve relevant memories
    relevant_memories = memory.search(query=message, user_id=user_id, limit=3)
    memories_str = "\n".join(f"- {entry['memory']}" for entry in relevant_memories["results"])

    # Generate Assistant response
    system_prompt = f"You are a helpful AI. Answer the question based on query and memories.\nUser Memories:\n{memories_str}"
    messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": message}]
    response = openai_client.chat.completions.create(model="gpt-4o-mini", messages=messages)
    assistant_response = response.choices[0].message.content

    # Create new memories from the conversation
    messages.append({"role": "assistant", "content": assistant_response})
    memory.add(messages, user_id=user_id)

    return assistant_response

def main():
    print("Chat with AI (type 'exit' to quit)")
    while True:
        user_input = input("You: ").strip()
        if user_input.lower() == 'exit':
            print("Goodbye!")
            break
        print(f"AI: {chat_with_memories(user_input)}")

if __name__ == "__main__":
    main()

For detailed integration steps, see the Quickstart and API Reference.

🔗 Integrations & Demos

  • ChatGPT with Memory: Personalized chat powered by Mem0 (Live Demo)
  • Browser Extension: Store memories across ChatGPT, Perplexity, and Claude (Chrome Extension)
  • Langgraph Support: Build a customer bot with Langgraph + Mem0 (Guide)
  • CrewAI Integration: Tailor CrewAI outputs with Mem0 (Example)

📚 Documentation & Support

Citation

We now have a paper you can cite:

@article{mem0,
  title={Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory},
  author={Chhikara, Prateek and Khant, Dev and Aryan, Saket and Singh, Taranjeet and Yadav, Deshraj},
  journal={arXiv preprint arXiv:2504.19413},
  year={2025}
}

⚖️ License

Apache 2.0 — see the LICENSE file for details.

Tools

No tools

Comments

Recommend MCP Servers

View All MCP Servers