- Explore MCP Servers
- modelctx
Modelctx
Overview
What is Modelctx
Modelctx is a comprehensive CLI tool designed for rapidly creating, configuring, and deploying Model Context Protocol (MCP) servers, facilitating seamless integration of AI applications with external tools and data sources.
Use cases
Use cases include creating production-ready MCP servers for AI applications, integrating AI with databases and APIs, developing automated workflows, and enhancing data accessibility for AI models.
How to use
To use modelctx, install it via pip and utilize the interactive wizard for guided setup. You can also use command line commands to list available backends and create specific MCP servers.
Key features
Key features include quick setup, support for multiple backends (databases, APIs, filesystems, etc.), an interactive wizard for configuration, comprehensive templates, built-in security, testing readiness, auto documentation generation, and integration with Claude Desktop.
Where to use
Modelctx can be used in various fields such as AI development, data integration, application development, and any scenario requiring standardized connections between AI models and external systems.
Content
ModelContextKit
π A comprehensive CLI tool for rapidly creating, configuring, and deploying Model Context Protocol (MCP) servers
π Visit our website: modelcontextkit.com
What is MCP?
The Model Context Protocol (MCP) is an open standard developed by Anthropic that enables AI applications (like Claude) to connect with external tools, data sources, and APIs in a standardized way. Think of it as βUSB-C for AI applicationsβ - it provides a universal connector between AI models and external systems.
Features
β¨ Quick Setup: Generate production-ready MCP servers in minutes, not hours
π§ Multiple Backends: Support for databases, APIs, filesystems, web scrapers, email, and cloud storage
π― Interactive Wizard: Guided setup with intelligent configuration prompts
π Comprehensive Templates: Pre-built templates following MCP best practices
π Security First: Built-in security features and input validation
π§ͺ Testing Ready: Generated projects include test suites and examples
π Auto Documentation: Comprehensive documentation generation
π¨ Claude Desktop Integration: Automatic configuration for Claude Desktop
β
Production Ready: Generates syntactically correct, tested code that works out of the box
Recent Improvements
π§ Fixed Code Generation: Resolved indentation and syntax issues in generated MCP servers
π Corrected MCP Schema: Updated to use proper input_schema
format
π§ͺ Improved Tests: Updated test templates to use modern MCP patterns
π Fixed Resource URIs: Simplified resource implementations to avoid template issues
β¨ Enhanced Reliability: All backend types now generate working, compilable code
Installation
# Install base package
pip install modelcontextkit
# Install with specific backend support
pip install modelcontextkit[database]
pip install modelcontextkit[api]
pip install modelcontextkit[filesystem]
pip install modelcontextkit[webscraper]
pip install modelcontextkit[email]
pip install modelcontextkit[cloudstorage]
# Install with all backends
pip install modelcontextkit[all]
Quick Start
Interactive Wizard (Recommended)
modelctx wizard
Command Line Interface
# List available backend types
modelctx list
# Create a database MCP server
modelctx create my-db-server --backend database
# Create an API integration server
modelctx create my-api-server --backend api
# View templates
modelctx templates
Supported Backends
ποΈ Database Backend
Connect to SQL databases (PostgreSQL, MySQL, SQLite) with built-in connection pooling and security.
Generated Tools:
execute_query(query: str)
- Execute SQL queries safelyget_table_schema(table_name: str)
- Get table structurelist_tables()
- List all tables
Configuration:
- Database connection parameters
- Connection pooling settings
- Query timeout and limits
π REST API Backend
Integrate with REST APIs with authentication, rate limiting, and error handling.
Generated Tools:
api_request(endpoint: str, method: str, data: dict)
- Make HTTP requestsget_api_status()
- Check API health
Authentication Support:
- Bearer tokens
- API keys
- OAuth2 flows
π Filesystem Backend
Access and manipulate local files and directories with security controls.
Generated Tools:
read_file(file_path: str)
- Read file contentswrite_file(file_path: str, content: str)
- Write to fileslist_directory(dir_path: str)
- List directory contentssearch_files(pattern: str, directory: str)
- Search for files
π·οΈ Web Scraper Backend
Scrape and parse web content with respect for robots.txt and rate limiting.
Generated Tools:
scrape_url(url: str)
- Extract content from web pagesextract_links(url: str)
- Get all links from a pagetake_screenshot(url: str)
- Capture page screenshots
π§ Email Backend
Send and receive emails via SMTP/IMAP with support for attachments.
Generated Tools:
send_email(to: str, subject: str, body: str)
- Send emailslist_emails(folder: str, limit: int)
- List emails from folderread_email(email_id: str)
- Read specific email
βοΈ Cloud Storage Backend
Connect to cloud storage services (AWS S3, Google Cloud Storage, Azure Blob).
Generated Tools:
upload_file(local_path: str, remote_key: str)
- Upload filesdownload_file(remote_key: str, local_path: str)
- Download fileslist_objects(prefix: str)
- List stored objectsdelete_object(key: str)
- Delete objects
Generated Project Structure
my-mcp-server/ βββ server.py # Main MCP server file βββ requirements.txt # Python dependencies βββ pyproject.toml # Python project metadata βββ README.md # Project documentation βββ .env.template # Environment variables template βββ .gitignore # Git ignore rules βββ config/ β βββ config.yaml # Main configuration file β βββ claude_desktop_config.json # Claude Desktop integration β βββ logging.yaml # Logging configuration βββ src/ β βββ __init__.py β βββ models/ # Data models β βββ services/ # Business logic β βββ utils/ # Utility functions βββ tests/ β βββ __init__.py β βββ test_server.py # Server tests β βββ test_tools.py # Tool-specific tests βββ docs/ β βββ API.md # API documentation β βββ DEPLOYMENT.md # Deployment guide βββ scripts/ βββ setup.sh # Setup script βββ deploy.sh # Deployment script
Configuration
The tool supports flexible configuration through:
- Interactive prompts during wizard mode
- Configuration files (YAML/JSON)
- Environment variables for sensitive data
- Command-line arguments for automation
Example configuration:
# config/config.yaml
server:
name: "my-api-server"
description: "API integration MCP server"
backend:
type: "api"
base_url: "https://api.example.com"
auth_type: "bearer"
rate_limit: 60
security:
validate_inputs: true
log_requests: true
timeout: 30
Claude Desktop Integration
Generated servers automatically include configuration for Claude Desktop:
{
"mcpServers": {
"my-mcp-server": {
"command": "python",
"args": [
"/path/to/my-mcp-server/server.py"
],
"env": {
"API_KEY": "your-api-key",
"DATABASE_URL": "your-db-connection"
}
}
}
}
Development and Testing
Each generated project includes:
- Unit tests with pytest
- Syntax validation - all generated code is syntactically correct
- MCP Inspector integration for testing
- Comprehensive test suites for all tools and resources
- Configuration validation and error handling
# Navigate to your generated project
cd my-mcp-server
# Install dependencies (if not done during creation)
pip install -r requirements.txt
# Validate the generated code syntax
python -c "import server; print('Server syntax OK')"
# Run the test suite
python -m pytest tests/ -v
# Test with MCP Inspector
npx @modelcontextprotocol/inspector python server.py
# Run the server directly
python server.py
Security Features
- π Input validation and sanitization
- π‘οΈ Access controls and permission systems
- π Audit logging for all operations
- π Secure credential management
- π« SQL injection prevention
- π CORS and rate limiting
Quality Assurance
ModelContextKit generates high-quality, production-ready code:
- β Syntax Validation: All generated Python code passes syntax validation
- β MCP Compliance: Generated servers follow MCP protocol specifications
- β Type Safety: Proper type hints and schema definitions
- β Error Handling: Comprehensive exception handling and logging
- β Test Coverage: Generated test suites validate all functionality
- β Documentation: Auto-generated documentation and examples
CLI Reference
# Create new MCP server
modelctx create <project-name> --backend <type> [options]
# Interactive wizard
modelctx wizard
# List available backends
modelctx list
# Manage templates
modelctx templates [list|add|remove]
# Generate documentation
modelctx docs <project-path>
# Deploy server (if configured)
modelctx deploy <project-name>
Contributing
We welcome contributions! Please see our Contributing Guide for details.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
- π Official Website
- π Documentation
- π Bug Reports
- π¬ Discussions
- π§ Create an issue for support
Made with β€οΈ for the MCP community