- Explore MCP Servers
- n8n-mcp-server
N8n Mcp Server
What is N8n Mcp Server
n8n-mcp-server is a Model Context Protocol (MCP) server designed for integration with n8n automation. It allows users to control n8n workflows programmatically using Large Language Models (LLMs).
Use cases
Use cases for n8n-mcp-server include automating repetitive tasks, integrating multiple services, and simplifying workflow management through natural language processing.
How to use
To use n8n-mcp-server, install it according to the provided installation instructions, ensure you understand the token consumption, and then interact with n8n using natural language commands to create, modify, and manage workflows.
Key features
Key features of n8n-mcp-server include automated workflow creation and modification, manipulation of n8n nodes, and management of workflow executions, all facilitated through LLMs.
Where to use
n8n-mcp-server can be used in various fields such as automation, data processing, and integration tasks, particularly where complex workflows need to be managed efficiently.
Clients Supporting MCP
The following are the main client software that supports the Model Context Protocol. Click the link to visit the official website for more information.
Overview
What is N8n Mcp Server
n8n-mcp-server is a Model Context Protocol (MCP) server designed for integration with n8n automation. It allows users to control n8n workflows programmatically using Large Language Models (LLMs).
Use cases
Use cases for n8n-mcp-server include automating repetitive tasks, integrating multiple services, and simplifying workflow management through natural language processing.
How to use
To use n8n-mcp-server, install it according to the provided installation instructions, ensure you understand the token consumption, and then interact with n8n using natural language commands to create, modify, and manage workflows.
Key features
Key features of n8n-mcp-server include automated workflow creation and modification, manipulation of n8n nodes, and management of workflow executions, all facilitated through LLMs.
Where to use
n8n-mcp-server can be used in various fields such as automation, data processing, and integration tasks, particularly where complex workflows need to be managed efficiently.
Clients Supporting MCP
The following are the main client software that supports the Model Context Protocol. Click the link to visit the official website for more information.
Content
n8n MCP Server
**⚠️ WARNING: ** Using this tool may consume a large number of tokens. Please ensure you understand the associated costs before using it.
[ English | 繁體中文 ]
Table of Contents
- Project Overview
- Project Status
- Available Tools
- Installation & Usage
- Technical Stack
- Project Structure
- Contribution Guidelines
- License
- Acknowledgments
Project Overview
This project establishes a Model Context Protocol (MCP) server for interaction with an n8n instance. It enables Large Language Models (LLMs) to programmatically control n8n for tasks such as:
- Automated creation and modification of n8n workflows.
- Manipulation of n8n nodes.
- Management of n8n workflow executions.
The primary objective is to allow users to direct an LLM via natural language to operate n8n, thereby simplifying and automating workflow design and management.
graph LR %% 定義 n8n API 節點(每個節點代表一組 API) wf[Workflows API] ex[Executions API] us[Users API] cr[Credentials API] tg[Tags API] pr[Projects API] va[Variables API] au[Audit API] sc[SourceControl API] %% 定義中樞節點與 MCP Tool n8n[("n8n-sdk-python")] tool[("n8n-mcp-server MCP Tool")] %% Workflows API 端點連線 wf -- "GET /workflows" --> n8n wf -- "GET /workflows/:id" --> n8n wf -- "POST /workflows" --> n8n wf -- "PUT /workflows/:id" --> n8n wf -- "DELETE /workflows/:id" --> n8n %% Executions API 端點連線 ex -- "GET /executions" --> n8n ex -- "GET /executions/:id" --> n8n ex -- "POST /executions" --> n8n %% Users API 端點連線 us -- "GET /users" --> n8n us -- "GET /users/:id" --> n8n us -- "POST /users" --> n8n us -- "PUT /users/:id" --> n8n us -- "DELETE /users/:id" --> n8n %% Credentials API 端點連線 cr -- "GET /credentials" --> n8n cr -- "GET /credentials/:id" --> n8n cr -- "POST /credentials" --> n8n cr -- "PUT /credentials/:id" --> n8n cr -- "DELETE /credentials/:id" --> n8n %% Tags API 端點連線 tg -- "GET /tags" --> n8n tg -- "GET /tags/:id" --> n8n tg -- "POST /tags" --> n8n tg -- "DELETE /tags/:id" --> n8n %% Projects API 端點連線 pr -- "GET /projects" --> n8n pr -- "GET /projects/:id" --> n8n pr -- "POST /projects" --> n8n pr -- "PUT /projects/:id" --> n8n pr -- "DELETE /projects/:id" --> n8n %% Variables API 端點連線 va -- "GET /variables" --> n8n va -- "GET /variables/:id" --> n8n va -- "POST /variables" --> n8n va -- "PUT /variables/:id" --> n8n va -- "DELETE /variables/:id" --> n8n %% Audit API 端點連線 au -- "GET /audit" --> n8n %% SourceControl API 端點連線 sc -- "GET /sourceControl" --> n8n sc -- "GET /sourceControl/:id" --> n8n sc -- "POST /sourceControl" --> n8n sc -- "PUT /sourceControl/:id" --> n8n sc -- "DELETE /sourceControl/:id" --> n8n %% 中樞節點轉發至 MCP Tool n8n -- "forward request" --> tool %% 右側:MCP Tool 下的各工具子分組 %% 工作流 workflow subgraph "Workflow" list_workflows[list_workflows] get_workflow[get_workflow] create_workflow[create_workflow] update_workflow[update_workflow] delete_workflow[delete_workflow] activate_workflow[activate_workflow] deactivate_workflow[deactivate_workflow] end %% 執行 execution subgraph "Execution" list_executions[list_executions] get_execution[get_execution] execute_workflow[execute_workflow] stop_execution[stop_execution] delete_execution[delete_execution] retry_execution[retry_execution] end %% 節點 node subgraph "Node" list_node_types[list_node_types] get_node_type[get_node_type] create_node[create_node] update_node[update_node] delete_node[delete_node] end %% 連線 connection subgraph "Connection" list_connections[list_connections] create_connection[create_connection] delete_connection[delete_connection] end %% 憑證 credential subgraph "Credential" list_credentials[list_credentials] get_credential[get_credential] create_credential[create_credential] update_credential[update_credential] delete_credential[delete_credential] test_credential[test_credential] list_credential_types[list_credential_types] end %% 從 MCP Tool 對各工具連線 tool --> list_workflows tool --> get_workflow tool --> create_workflow tool --> update_workflow tool --> delete_workflow tool --> activate_workflow tool --> deactivate_workflow tool --> list_executions tool --> get_execution tool --> execute_workflow tool --> stop_execution tool --> delete_execution tool --> retry_execution tool --> list_node_types tool --> get_node_type tool --> create_node tool --> update_node tool --> delete_node tool --> list_connections tool --> create_connection tool --> delete_connection tool --> list_credentials tool --> get_credential tool --> create_credential tool --> update_credential tool --> delete_credential tool --> test_credential tool --> list_credential_types
Project Status
Completed Features
- Workflow Management:
- List workflows with filtering capabilities.
- Retrieve detailed workflow definitions.
- Create new workflows with nodes, connections, settings, and static data.
- Update existing workflows (name, nodes, connections, activation status, settings, static data).
- Delete workflows.
- Activate and deactivate workflows.
- Node Discovery & Analysis:
- List available node types from local classification files (filtered by category/class).
- Retrieve detailed node definition files for a specific node type.
- Execution Monitoring:
- List workflow execution records with filtering.
- Get detailed information for a specific execution.
- Delete execution records.
- MCP Resources:
n8n:/workflow/{workflow_id}
: Access workflow definition data.n8n:/node-types
: Access information on available n8n node types from local files.n8n:/tags
: Access information on all n8n tags.
Pending Features
- Reduce token consumption, optimize prompts.
- Execution Control:
execute_workflow
: Programmatically trigger workflow executions.stop_execution
: Halt ongoing workflow executions.retry_execution
: Re-run failed workflow executions.
- Node Management (Workflow Context):
create_node
: Add a new node to an existing workflow.update_node
: Modify an existing node within a workflow.delete_node
: Remove a node from a workflow.
- Connection Management (Workflow Context):
list_connections
: List connections within a specific workflow.create_connection
: Add a connection between nodes in a workflow.delete_connection
: Remove a connection between nodes in a workflow.
- Credential Management:
- Full suite of tools for listing, getting, creating, updating, deleting, and testing credentials.
- Listing available credential types.
- Broader n8n API Coverage: Integration of tools for Users, Projects, Variables, Audit, and Source Control if deemed necessary.
Available Tools
The MCP server exposes the following tools for LLM interaction, based on the n8n-sdk-python
:
Workflow Management
-
list_workflows
: Retrieves a filtered list of workflows from the n8n instance.- Description: Returns a collection of workflow summaries matching specified filter criteria. Each summary includes metadata like ID, name, active status, and tags. For full definitions, use
get_workflow
. - Args:
active_only
(bool, optional): IfTrue
, returns only active workflows. Default:False
.tags
(str, optional): Comma-separated string of tag names to filter by (e.g., “production,api”). Returns workflows with ALL specified tags.name
(str, optional): Filter by workflow name (partial matching).project_id
(str, optional): Filter by project ID.limit
(int, optional): Maximum number of workflows to return.
- Returns (dict):
status
(str): “success” or “failure”.count
(int): Number of workflows matching criteria.workflows
(list): Array of workflow summary objects.message
(str, optional): Error description on failure.
- Description: Returns a collection of workflow summaries matching specified filter criteria. Each summary includes metadata like ID, name, active status, and tags. For full definitions, use
-
get_workflow
: Retrieves the complete definition of a specific workflow.- Description: Returns the full technical specification, including nodes, connections, settings, and metadata, conforming to
n8n_sdk_python.models.workflows.Workflow
. - Args:
workflow_id
(str, required): The unique identifier of the workflow.exclude_pinned_data
(bool, optional): IfTrue
(default), omits pinned test data. IfFalse
, includes it.
- Returns (dict):
status
(str): “success” or “failure”.workflow
(dict): Complete workflow definition object on success.message
(str, optional): Error description on failure.
- Description: Returns the full technical specification, including nodes, connections, settings, and metadata, conforming to
-
create_workflow
: Creates a new workflow with the specified configuration.- Description: Constructs a workflow adhering to
n8n_sdk_python.models.workflows.WorkflowCreate
. - Args:
name
(str, required): Descriptive and unique workflow name.nodes
(list[dict], required): Array of node configurations (conforming toNode
model).connections
(dict, optional): Data flow definitions between nodes.active
(bool, optional): Activate on creation. Default:False
.settings
(dict, optional): Execution settings (timeout, data retention, timezone).static_data
(dict, optional): Persistent state storage.
- Returns (dict):
status
(str): “success” or “failure”.message
(str): Confirmation or error.workflow
(dict): Basic info of created workflow (id, name, active) on success.
- Description: Constructs a workflow adhering to
-
update_workflow
: Modifies an existing workflow.- Description: Updates structure, settings, or activation. Omitted parameters retain current values.
- Args:
workflow_id
(str, required): Identifier of the workflow to modify.name
(str, optional): New display name.nodes
(list[dict], optional): Replaces ALL existing nodes if provided.connections
(dict, optional): Replaces ALL existing connections if provided.active
(bool, optional): New activation state.settings
(dict, optional): Updates execution settings (partial updates applied).static_data
(dict, optional): Replaces entire static data object.
- Returns (dict):
status
(str): “success” or “failure”.message
(str): Confirmation or error.workflow
(dict): Basic info of updated workflow (id, name, active) on success.
-
delete_workflow
: Permanently removes a workflow.- Description: Deletes workflow and all associated configurations. Irreversible.
- Args:
workflow_id
(str, required): Identifier of the workflow to delete.
- Returns (dict):
status
(str): “success” or “failure”.message
(str): Confirmation or error.
-
activate_workflow
: Enables a workflow for execution.- Description: Makes a workflow operational (webhook triggers, schedule triggers, event triggers become active).
- Args:
workflow_id
(str, required): Identifier of the workflow to activate.
- Returns (dict):
status
(str): “success” or “failure”.message
(str): Confirmation or error.workflow
(dict): Basic info (id, name, active) on success.
-
deactivate_workflow
: Disables a workflow from executing.- Description: Suspends operational capabilities (webhook, schedule, event triggers become inactive).
- Args:
workflow_id
(str, required): Identifier of the workflow to deactivate.
- Returns (dict):
status
(str): “success” or “failure”.message
(str): Confirmation or error.workflow
(dict): Basic info (id, name, active) on success.
Execution Monitoring
-
list_workflow_executions
: Retrieves execution history for a workflow.- Description: Returns a paginated list of execution records, filterable by status. Includes metadata like start/end times, status, and mode.
- Args:
workflow_id
(str, required): Target workflow identifier.status
(str, optional): Filter by outcome ('error', 'success', 'waiting').limit
(int, optional): Max records to return. Default:10
.include_data
(bool, optional): Include full execution data. Default:False
.
- Returns (dict):
status
(str): “success” or “failure”.count
(int): Number of records returned.executions
(list): Array of execution record objects.message
(str, optional): Error description on failure.
-
get_execution
: Retrieves detailed information for a specific execution.- Description: Returns comprehensive details including context, timestamps, state, and optionally full execution data.
- Args:
execution_id
(str, required): Identifier of the execution record.include_data
(bool, optional): Include full execution data. Default:False
.
- Returns (dict):
status
(str): “success” or “failure”.execution
(dict): Complete execution record on success.message
(str, optional): Error description on failure.
-
delete_execution
: Permanently removes an execution record.- Description: Deletes a specific execution record. Irreversible.
- Args:
execution_id
(str, required): Identifier of the execution record to delete.
- Returns (dict):
status
(str): “success” or “failure”.message
(str): Confirmation or error.
Node Discovery & Analysis
-
list_nodes
: Retrieves available node types from local classification files.- Description: Provides access to the node type registry, filterable by category or class. Queries local files.
- Args:
category
(str, optional): Filter by node category (case-insensitive, e.g., 'Core Nodes').node_class
(str, optional): Filter by node class (case-insensitive, e.g., 'action').return_types_only
(bool, optional): IfTrue
(default), returns array of node type identifiers. IfFalse
, returns detailed node objects.
- Returns (dict):
status
(str): “success” or “failure”.count
(int): Number of matching nodes.nodes
(list): Array of node type strings or detailed node objects.message
(str, optional): Error description on failure.
-
get_node_info
: Retrieves comprehensive definition for a specific node type.- Description: Provides detailed technical specifications (schema, parameters, implementation) by returning content of all definition files. Queries local files.
- Args**:
node_type
(str, required): Type identifier of the node (e.g., 'n8n-nodes-base.httpRequest').
- Returns (dict):
status
(str): “success” or “failure”.files
(dict): Maps filenames to content for all definition files on success.message
(str, optional): Error description on failure.- (Other metadata like
type_identifier
,display_name
also included on success).
Setup and Usage
Installation and Configuration
- Clone Repository and Install Dependencies
git clone https://github.com/eric050828/n8n-mcp-server.git
cd n8n-mcp-server
python -m venv venv
# On macOS/Linux
source venv/bin/activate
# On Windows
# venv\\Scripts\\activate
pip install -r requirements.txt
- Configure Environment Variables
Copy.env.example
to.env
and set the following critical variables:
cp .env.example .env
Edit .env
:
# n8n API Configuration
N8N_BASE_URL=http://localhost:5678 # URL of your n8n instance
N8N_API_KEY=your_n8n_api_key_here # n8n API Key (if authentication is enabled)
# Logging Configuration
LOG_LEVEL=INFO # Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
# Node Data Paths (Ensure these paths are correct for your setup if not using defaults)
NODE_DATA_BASE_PATH=node_data
CATEGORY_CLASSIFICATION_PATH=node_data/category_classification_result.json
CLASS_CLASSIFICATION_PATH=node_data/class_classification_result.json
- Add MCP Server to MCP Client
{
"mcpServers": {
"n8n-mcp-server": {
"command": "path-to-your-project-root/venv/Scripts/python.exe",
"args": [
"path-to-your-project-root/n8n_mcp_server.py"
],
"env": {
"PYTHONPATH": "path-to-your-project-root",
"N8N_BASE_URL": "http://localhost:5678",
"N8N_API_KEY": "your_n8n_api_key",
"NODE_DATA_BASE_PATH": "path-to-your-project-root/node_data",
"CATEGORY_CLASSIFICATION_PATH": "path-to-your-project-root/node_data/category_classification_result.json",
"CLASS_CLASSIFICATION_PATH": "path-to-your-project-root/node_data/class_classification_result.json"
}
}
}
}
Security Considerations
- API Key Protection: Secure your n8n API key; avoid exposing it in public environments.
- Access Control: If deploying the MCP server over HTTP, implement robust authentication and authorization mechanisms to restrict access to authorized clients.
- Operation Scoping: Configure tool usage permissions if your MCP client or gateway supports it, minimizing operational risks.
- Logging and Auditing: Maintain detailed logs to track API calls and operations for security and debugging purposes.
Technical Stack
- Core Framework:
- Python 3.8+
mcp.server.fastmcp.FastMCP
for MCP server implementation.n8n-sdk-python
for interacting with the n8n API.
- Data Handling & Validation:
- Pydantic (used by
n8n-sdk-python
and potentially within MCP tools/prompts).
- Pydantic (used by
- Environment Management:
python-dotenv
for loading environment variables.
- Logging:
- Standard Python
logging
module, with optionalRichHandler
for enhanced console output.
- Standard Python
Project Structure
n8n-mcp-server/ ├── mcp_components/ # Core MCP logic │ ├── tools/ # MCP tool definitions │ │ ├── init.py │ │ ├── executions.py │ │ ├── nodes.py │ │ └── workflows.py │ ├── resources.py # MCP resource definitions │ ├── prompts.py # MCP prompt definitions │ └── init.py ├── node_data/ # (Example) Local n8n node definition data │ ├── category_classification_result.json # Generated node classification │ ├── class_classification_result.json # Generated node classification │ ├── categories/ # Node definitions by category │ └── classes/ # Node definitions by class ├── config.py # Server configuration, n8n client initialization ├── main.py # Main server entry point ├── mcp_server.py # FastMCP app instance creation and lifespan management ├── .env # Environment variables ├── .env.example # Example environment variables ├── .gitignore ├── README.md └── requirements.txt # Python dependencies
Contribution Guidelines
Contributions are welcome! Please follow these guidelines:
Reporting Issues
If you find a bug or have a feature suggestion, please open an issue on the GitHub repository, providing:
- A clear description of the issue or suggestion.
- Steps to reproduce (if applicable).
- Expected vs. actual behavior.
- Environment details (OS, Python version, etc.).
Code Contributions
- Fork the repository.
- Create your feature branch (
git checkout -b feature/your-amazing-feature
). - Commit your changes (
git commit -m \'Add some amazing feature\'
). - Push to the branch (
git push origin feature/your-amazing-feature
). - Open a Pull Request.
Development Standards
- Follow PEP 8 coding style.
- Write unit tests for new features.
- Update relevant documentation (README, docstrings).
- Ensure tests pass before submitting (
pytest
).
License
This project is licensed under the MIT License - see the LICENSE
file for details (if one is created).
Acknowledgements
- The n8n team for the powerful workflow automation platform.
- The Model Context Protocol initiative for standardizing AI-tool interaction.
- Contributors to
n8n-sdk-python
.
Dev Tools Supporting MCP
The following are the main code editors that support the Model Context Protocol. Click the link to visit the official website for more information.