MCP ExplorerExplorer

Quantconnect Mcp

@taylorwilsdonon 5 days ago
2 MIT
FreeCommunity
AI Systems
#lean-engine#quantconnect#quantitative-finance#stock-indicators#trading#trading-algorithms#trading-platform
QuantConnect Algorithmic Trading Platform Orchestration MCP - Agentic LLM Driven Trading Strategy Design, Research & Implementation

Overview

What is Quantconnect Mcp

QuantConnect MCP Server is a production-ready Model Context Protocol server designed for seamless integration with QuantConnect’s algorithmic trading platform. It allows developers and researchers to enhance their algorithmic trading research by providing advanced tools for statistical analysis, portfolio optimization, and more within QuantConnect’s framework.

Use cases

The server facilitates various use cases like portfolio optimization through mean reversion analysis, performing PCA and correlation studies to analyze financial data, universe selection for asset screening, and enabling users to build, backtest, and deploy trading strategies effectively within the QuantConnect environment.

How to use

To get started, users can clone the repository, set up their QuantConnect credentials, launch the server, and begin utilizing features like initializing a QuantBook instance, adding securities, and performing analyses. Sample code snippets are provided for various functionalities including financial research, statistical analysis workflows, and project management.

Key features

Key features include a robust research environment (QuantBook integration), advanced analytics capabilities (PCA, cointegration testing), sophisticated portfolio optimization algorithms, rigorous universe selection tools, enterprise-level security via SHA-256 authentication, and an async-first design for high-performance data processing.

Where to use

The MCP Server is specifically designed for use within the QuantConnect ecosystem, making it suitable for algorithmic trading researchers, developers, and quants who are looking to leverage the power of statistical analysis and optimization in their trading strategies, particularly in Python-based workflows.

Content

🚀 QuantConnect MCP Server

Python
FastMCP
License
Code Style
Type Checked

Professional-grade Model Context Protocol server for QuantConnect’s algorithmic trading platform

Seamlessly integrate QuantConnect’s research environment, statistical analysis, and portfolio optimization into your AI workflows

🎯 Quick Start
📖 Documentation
🏗️ Architecture
🤝 Contributing


✨ Why QuantConnect MCP Server?

Transform your algorithmic trading research with a production-ready MCP server that provides:

  • 🧪 Research Environment: Full QuantBook integration for interactive financial analysis
  • 📊 Advanced Analytics: PCA, cointegration testing, mean reversion analysis, and correlation studies
  • 🎯 Portfolio Optimization: Sophisticated sparse optimization with Huber Downward Risk minimization
  • 🌐 Universe Selection: ETF constituent analysis and multi-criteria asset screening
  • 🔐 Enterprise Security: SHA-256 authenticated API integration with QuantConnect
  • High Performance: Async-first design with concurrent data processing

📋 Table of Contents

🎯 Quick Start

Get up and running in under 3 minutes:

1. Install Dependencies

# Clone the repository
git clone https://github.com/your-org/quantconnect-mcp
cd quantconnect-mcp

# Install with uv (recommended)
uv sync

# Or with pip
pip install -e .

2. Set Up QuantConnect Credentials

export QUANTCONNECT_USER_ID="your_user_id"
export QUANTCONNECT_API_TOKEN="your_api_token"
export QUANTCONNECT_ORGANIZATION_ID="your_org_id"  # Optional

3. Launch the Server

# STDIO transport (default)
python main.py

# HTTP transport
MCP_TRANSPORT=streamable-http MCP_PORT=8000 python main.py

4. Start Analyzing

# Initialize research environment
await initialize_quantbook(instance_name="research")

# Add securities for analysis
await add_multiple_equities(["AAPL", "MSFT", "GOOGL", "AMZN"], resolution="Daily")

# Perform sophisticated analysis
await perform_pca_analysis(
    symbols=["AAPL", "MSFT", "GOOGL", "AMZN"],
    start_date="2023-01-01",
    end_date="2024-01-01"
)

🛠️ Installation

Prerequisites

  • Python 3.12+ (Type-annotated for maximum reliability)
  • QuantConnect LEAN (Installation Guide)
  • Active QuantConnect Account with API access

Standard Installation

# Using uv (fastest)
uv sync

# Using pip
pip install -e .

# Development installation with testing tools
uv sync --dev

Verify Installation

# Check server health
python -c "from src.server import mcp; print('✅ Installation successful')"

# Run test suite
pytest tests/ -v

🔑 Authentication

Getting Your Credentials

Credential Where to Find Required
User ID Email received when signing up ✅ Yes
API Token QuantConnect Settings ✅ Yes
Organization ID Organization URL: /organization/{ID} ⚪ Optional

Configuration Methods

Method 1: Environment Variables (Recommended)

# Add to your .bashrc, .zshrc, or .env file
export QUANTCONNECT_USER_ID="123456"
export QUANTCONNECT_API_TOKEN="your_secure_token_here"
export QUANTCONNECT_ORGANIZATION_ID="your_org_id"  # Optional

Method 2: Runtime Configuration

# Configure programmatically
await configure_quantconnect_auth(
    user_id="123456",
    api_token="your_secure_token_here",
    organization_id="your_org_id"  # Optional
)

# Validate configuration
result = await validate_quantconnect_auth()
print(f"Auth Status: {result['authenticated']}")

Method 3: Interactive Setup

# Check current status
status = await get_auth_status()

# Test API connectivity
test_result = await test_quantconnect_api()

🚀 Usage Examples

Financial Research Pipeline

# 1. Initialize research environment
await initialize_quantbook(instance_name="research_2024")

# 2. Build universe from ETF constituents
await add_etf_universe_securities(
    etf_ticker="QQQ",
    date="2024-01-01",
    resolution="Daily"
)

# 3. Perform correlation analysis
correlation_matrix = await calculate_correlation_matrix(
    symbols=["AAPL", "MSFT", "GOOGL", "AMZN", "TSLA"],
    start_date="2023-01-01",
    end_date="2024-01-01"
)

# 4. Find uncorrelated assets for diversification
uncorrelated = await select_uncorrelated_assets(
    symbols=correlation_matrix["symbols"],
    num_assets=5,
    method="lowest_correlation",
    start_date="2023-01-01",
    end_date="2024-01-01"
)

# 5. Optimize portfolio with advanced algorithm
optimized_portfolio = await sparse_optimization(
    portfolio_symbols=uncorrelated["selected_assets"]["symbols"],
    benchmark_symbol="SPY",
    start_date="2023-01-01",
    end_date="2024-01-01",
    max_weight=0.15,
    lambda_param=0.01
)

Statistical Analysis Workflow

# Cointegration analysis for pairs trading
cointegration_result = await test_cointegration(
    symbol1="KO",
    symbol2="PEP",
    start_date="2023-01-01",
    end_date="2024-01-01",
    trend="c"
)

if cointegration_result["is_cointegrated"]:
    print(f"✅ Cointegration detected (p-value: {cointegration_result['cointegration_pvalue']:.4f})")
    
    # Analyze mean reversion opportunities
    mean_reversion = await analyze_mean_reversion(
        symbols=["KO", "PEP"],
        start_date="2023-01-01",
        end_date="2024-01-01",
        lookback_period=20
    )

Project and Backtest Management

# Create new algorithmic trading project
project = await create_project(
    name="Mean_Reversion_Strategy_v2",
    language="Py"
)

# Upload algorithm code
await create_file(
    project_id=project["project"]["projectId"],
    name="main.py",
    content=algorithm_code
)

# Run backtest
backtest = await create_backtest(
    project_id=project["project"]["projectId"],
    compile_id="latest",
    backtest_name="Mean_Reversion_Test_Run",
    parameters={"lookback_period": 20, "threshold": 2.0}
)

# Analyze results
results = await read_backtest(
    project_id=project["project"]["projectId"],
    backtest_id=backtest["backtest"]["backtestId"]
)

📖 Comprehensive API Reference

🔐 Authentication Tools

Tool Description Key Parameters
configure_quantconnect_auth Set up API credentials user_id, api_token, organization_id
validate_quantconnect_auth Test credential validity -
get_auth_status Check authentication status -
test_quantconnect_api Test API connectivity endpoint, method
clear_quantconnect_auth Clear stored credentials -

📊 Project Management Tools

Tool Description Key Parameters
create_project Create new QuantConnect project name, language, organization_id
read_project Get project details or list all project_id (optional)
update_project Update project name/description project_id, name, description

📁 File Management Tools

Tool Description Key Parameters
create_file Create file in project project_id, name, content
read_file Read file(s) from project project_id, name (optional)
update_file_content Update file content project_id, name, content
update_file_name Rename file in project project_id, old_file_name, new_name

🧪 QuantBook Research Tools

Tool Description Key Parameters
initialize_quantbook Create new research instance instance_name, organization_id, token
list_quantbook_instances View all active instances -
get_quantbook_info Get instance details instance_name
remove_quantbook_instance Clean up instance instance_name

📈 Data Retrieval Tools

Tool Description Key Parameters
add_equity Add single equity security ticker, resolution, instance_name
add_multiple_equities Add multiple securities tickers, resolution, instance_name
get_history Get historical price data symbols, start_date, end_date, resolution
add_alternative_data Subscribe to alt data data_type, symbol, instance_name
get_alternative_data_history Get alt data history data_type, symbols, start_date, end_date

🔬 Statistical Analysis Tools

Tool Description Key Parameters
perform_pca_analysis Principal Component Analysis symbols, start_date, end_date, n_components
test_cointegration Engle-Granger cointegration test symbol1, symbol2, start_date, end_date
analyze_mean_reversion Mean reversion analysis symbols, start_date, end_date, lookback_period
calculate_correlation_matrix Asset correlation analysis symbols, start_date, end_date

💰 Portfolio Optimization Tools

Tool Description Key Parameters
sparse_optimization Advanced sparse optimization portfolio_symbols, benchmark_symbol, optimization params
calculate_portfolio_performance Performance metrics symbols, weights, start_date, end_date
optimize_equal_weight_portfolio Equal-weight optimization symbols, start_date, end_date, rebalance_frequency

🌐 Universe Selection Tools

Tool Description Key Parameters
get_etf_constituents Get ETF holdings etf_ticker, date, instance_name
add_etf_universe_securities Add all ETF constituents etf_ticker, date, resolution
select_uncorrelated_assets Find uncorrelated assets symbols, num_assets, method
screen_assets_by_criteria Multi-criteria screening symbols, min_return, max_volatility, etc.

🔥 Backtest Management Tools

Tool Description Key Parameters
create_backtest Create new backtest project_id, compile_id, backtest_name
read_backtest Get backtest results project_id, backtest_id, chart
read_backtest_chart Get chart data project_id, backtest_id, name
read_backtest_orders Get order history project_id, backtest_id, start, end
read_backtest_insights Get insights data project_id, backtest_id, start, end

🏗️ Architecture

quantconnect-mcp/
├── 🎛️  main.py                    # Server entry point & configuration
├── 📊  src/
│   ├── 🖥️  server.py              # FastMCP server core
│   ├── 🔧  tools/                 # Tool implementations
│   │   ├── 🔐  auth_tools.py      # Authentication management
│   │   ├── 📁  project_tools.py   # Project CRUD operations
│   │   ├── 📄  file_tools.py      # File management
│   │   ├── 🧪  quantbook_tools.py # Research environment
│   │   ├── 📈  data_tools.py      # Data retrieval
│   │   ├── 🔬  analysis_tools.py  # Statistical analysis
│   │   ├── 💰  portfolio_tools.py # Portfolio optimization
│   │   ├── 🌐  universe_tools.py  # Universe selection
│   │   └── 📊  backtest_tools.py  # Backtest management
│   ├── 🔐  auth/                  # Authentication system
│   │   ├── __init__.py
│   │   └── quantconnect_auth.py   # Secure API authentication
│   └── 📊  resources/             # System resources
│       ├── __init__.py
│       └── system_resources.py   # Server monitoring
├── 🧪  tests/                     # Comprehensive test suite
│   ├── test_auth.py
│   ├── test_server.py
│   └── __init__.py
├── 📋  pyproject.toml             # Project configuration
└── 📖  README.md                  # This file

Core Design Principles

  • 🏛️ Modular Architecture: Each tool category is cleanly separated for maintainability
  • 🔒 Security First: SHA-256 authenticated API with secure credential management
  • ⚡ Async Performance: Non-blocking operations for maximum throughput
  • 🧪 Type Safety: Full type annotations with mypy verification
  • 🔧 Extensible: Plugin-based architecture for easy feature additions

🔧 Advanced Configuration

Transport Options

# STDIO (default) - Best for MCP clients
python main.py

# HTTP Server - Best for web integrations
MCP_TRANSPORT=streamable-http MCP_HOST=0.0.0.0 MCP_PORT=8000 python main.py

# Custom path for HTTP
MCP_PATH=/api/v1/mcp python main.py

Environment Variables

Variable Description Default Example
MCP_TRANSPORT Transport method stdio streamable-http
MCP_HOST Server host 127.0.0.1 0.0.0.0
MCP_PORT Server port 8000 3000
MCP_PATH HTTP endpoint path /mcp /api/v1/mcp
LOG_LEVEL Logging verbosity INFO DEBUG

System Resources

Monitor server performance and status:

# System information
system_info = await get_resource("resource://system/info")

# Server status and active instances  
server_status = await get_resource("resource://quantconnect/server/status")

# Available tools summary
tools_summary = await get_resource("resource://quantconnect/tools/summary")

# Performance metrics
performance = await get_resource("resource://quantconnect/performance/metrics")

# Top processes by CPU usage
top_processes = await get_resource("resource://system/processes/10")

🧪 Testing

Run the Test Suite

# Run all tests
pytest tests/ -v

# Run with coverage
pytest tests/ --cov=src --cov-report=html

# Run specific test category
pytest tests/test_auth.py -v

# Run tests in parallel
pytest tests/ -n auto

Manual Testing

# Test authentication
python -c "
import asyncio
from src.auth import validate_authentication
print(asyncio.run(validate_authentication()))
"

# Test server startup
python main.py --help

🤝 Contributing

We welcome contributions! This project follows the highest Python development standards:

Development Setup

# Fork and clone the repository
git clone https://github.com/your-username/quantconnect-mcp
cd quantconnect-mcp

# Install development dependencies
uv sync --dev

# Install pre-commit hooks
pre-commit install

Code Quality Standards

  • Type Hints: All functions must have complete type annotations
  • Documentation: Comprehensive docstrings for all public functions
  • Testing: Minimum 90% test coverage required
  • Formatting: Black code formatting enforced
  • Linting: Ruff linting with zero warnings
  • Type Checking: mypy verification required

Development Workflow

# Create feature branch
git checkout -b feature/amazing-new-feature

# Make changes and run quality checks
ruff check src/
black src/ tests/
mypy src/

# Run tests
pytest tests/ --cov=src

# Commit with conventional commits
git commit -m "feat: add amazing new feature"

# Push and create pull request
git push origin feature/amazing-new-feature

Pull Request Guidelines

  1. 📝 Clear Description: Explain what and why, not just how
  2. 🧪 Test Coverage: Include tests for all new functionality
  3. 📖 Documentation: Update README and docstrings as needed
  4. 🔍 Code Review: Address all review feedback
  5. ✅ CI Passing: All automated checks must pass

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.


Built with ❤️ for the algorithmic trading community

Python
FastMCP
QuantConnect

⭐ Star this repo
🐛 Report issues
💡 Request features

Tools

No tools

Comments