- Explore MCP Servers
- quantconnect-mcp
Quantconnect Mcp
What is Quantconnect Mcp
QuantConnect MCP Server is a production-ready Model Context Protocol server designed for seamless integration with QuantConnect’s algorithmic trading platform. It allows developers and researchers to enhance their algorithmic trading research by providing advanced tools for statistical analysis, portfolio optimization, and more within QuantConnect’s framework.
Use cases
The server facilitates various use cases like portfolio optimization through mean reversion analysis, performing PCA and correlation studies to analyze financial data, universe selection for asset screening, and enabling users to build, backtest, and deploy trading strategies effectively within the QuantConnect environment.
How to use
To get started, users can clone the repository, set up their QuantConnect credentials, launch the server, and begin utilizing features like initializing a QuantBook instance, adding securities, and performing analyses. Sample code snippets are provided for various functionalities including financial research, statistical analysis workflows, and project management.
Key features
Key features include a robust research environment (QuantBook integration), advanced analytics capabilities (PCA, cointegration testing), sophisticated portfolio optimization algorithms, rigorous universe selection tools, enterprise-level security via SHA-256 authentication, and an async-first design for high-performance data processing.
Where to use
The MCP Server is specifically designed for use within the QuantConnect ecosystem, making it suitable for algorithmic trading researchers, developers, and quants who are looking to leverage the power of statistical analysis and optimization in their trading strategies, particularly in Python-based workflows.
Overview
What is Quantconnect Mcp
QuantConnect MCP Server is a production-ready Model Context Protocol server designed for seamless integration with QuantConnect’s algorithmic trading platform. It allows developers and researchers to enhance their algorithmic trading research by providing advanced tools for statistical analysis, portfolio optimization, and more within QuantConnect’s framework.
Use cases
The server facilitates various use cases like portfolio optimization through mean reversion analysis, performing PCA and correlation studies to analyze financial data, universe selection for asset screening, and enabling users to build, backtest, and deploy trading strategies effectively within the QuantConnect environment.
How to use
To get started, users can clone the repository, set up their QuantConnect credentials, launch the server, and begin utilizing features like initializing a QuantBook instance, adding securities, and performing analyses. Sample code snippets are provided for various functionalities including financial research, statistical analysis workflows, and project management.
Key features
Key features include a robust research environment (QuantBook integration), advanced analytics capabilities (PCA, cointegration testing), sophisticated portfolio optimization algorithms, rigorous universe selection tools, enterprise-level security via SHA-256 authentication, and an async-first design for high-performance data processing.
Where to use
The MCP Server is specifically designed for use within the QuantConnect ecosystem, making it suitable for algorithmic trading researchers, developers, and quants who are looking to leverage the power of statistical analysis and optimization in their trading strategies, particularly in Python-based workflows.
Content
🚀 QuantConnect MCP Server
Professional-grade Model Context Protocol server for QuantConnect’s algorithmic trading platform
Seamlessly integrate QuantConnect’s research environment, statistical analysis, and portfolio optimization into your AI workflows
🎯 Quick Start •
📖 Documentation •
🏗️ Architecture •
🤝 Contributing
✨ Why QuantConnect MCP Server?
Transform your algorithmic trading research with a production-ready MCP server that provides:
- 🧪 Research Environment: Full QuantBook integration for interactive financial analysis
- 📊 Advanced Analytics: PCA, cointegration testing, mean reversion analysis, and correlation studies
- 🎯 Portfolio Optimization: Sophisticated sparse optimization with Huber Downward Risk minimization
- 🌐 Universe Selection: ETF constituent analysis and multi-criteria asset screening
- 🔐 Enterprise Security: SHA-256 authenticated API integration with QuantConnect
- ⚡ High Performance: Async-first design with concurrent data processing
📋 Table of Contents
- 🎯 Quick Start
- 🛠️ Installation
- 🔑 Authentication
- 🚀 Usage Examples
- 📖 Comprehensive API Reference
- 🏗️ Architecture
- 🔧 Advanced Configuration
- 🧪 Testing
- 🤝 Contributing
- 📄 License
🎯 Quick Start
Get up and running in under 3 minutes:
1. Install Dependencies
# Clone the repository
git clone https://github.com/your-org/quantconnect-mcp
cd quantconnect-mcp
# Install with uv (recommended)
uv sync
# Or with pip
pip install -e .
2. Set Up QuantConnect Credentials
export QUANTCONNECT_USER_ID="your_user_id"
export QUANTCONNECT_API_TOKEN="your_api_token"
export QUANTCONNECT_ORGANIZATION_ID="your_org_id" # Optional
3. Launch the Server
# STDIO transport (default)
python main.py
# HTTP transport
MCP_TRANSPORT=streamable-http MCP_PORT=8000 python main.py
4. Start Analyzing
# Initialize research environment
await initialize_quantbook(instance_name="research")
# Add securities for analysis
await add_multiple_equities(["AAPL", "MSFT", "GOOGL", "AMZN"], resolution="Daily")
# Perform sophisticated analysis
await perform_pca_analysis(
symbols=["AAPL", "MSFT", "GOOGL", "AMZN"],
start_date="2023-01-01",
end_date="2024-01-01"
)
🛠️ Installation
Prerequisites
- Python 3.12+ (Type-annotated for maximum reliability)
- QuantConnect LEAN (Installation Guide)
- Active QuantConnect Account with API access
Standard Installation
# Using uv (fastest)
uv sync
# Using pip
pip install -e .
# Development installation with testing tools
uv sync --dev
Verify Installation
# Check server health
python -c "from src.server import mcp; print('✅ Installation successful')"
# Run test suite
pytest tests/ -v
🔑 Authentication
Getting Your Credentials
Credential | Where to Find | Required |
---|---|---|
User ID | Email received when signing up | ✅ Yes |
API Token | QuantConnect Settings | ✅ Yes |
Organization ID | Organization URL: /organization/{ID} |
⚪ Optional |
Configuration Methods
Method 1: Environment Variables (Recommended)
# Add to your .bashrc, .zshrc, or .env file
export QUANTCONNECT_USER_ID="123456"
export QUANTCONNECT_API_TOKEN="your_secure_token_here"
export QUANTCONNECT_ORGANIZATION_ID="your_org_id" # Optional
Method 2: Runtime Configuration
# Configure programmatically
await configure_quantconnect_auth(
user_id="123456",
api_token="your_secure_token_here",
organization_id="your_org_id" # Optional
)
# Validate configuration
result = await validate_quantconnect_auth()
print(f"Auth Status: {result['authenticated']}")
Method 3: Interactive Setup
# Check current status
status = await get_auth_status()
# Test API connectivity
test_result = await test_quantconnect_api()
🚀 Usage Examples
Financial Research Pipeline
# 1. Initialize research environment
await initialize_quantbook(instance_name="research_2024")
# 2. Build universe from ETF constituents
await add_etf_universe_securities(
etf_ticker="QQQ",
date="2024-01-01",
resolution="Daily"
)
# 3. Perform correlation analysis
correlation_matrix = await calculate_correlation_matrix(
symbols=["AAPL", "MSFT", "GOOGL", "AMZN", "TSLA"],
start_date="2023-01-01",
end_date="2024-01-01"
)
# 4. Find uncorrelated assets for diversification
uncorrelated = await select_uncorrelated_assets(
symbols=correlation_matrix["symbols"],
num_assets=5,
method="lowest_correlation",
start_date="2023-01-01",
end_date="2024-01-01"
)
# 5. Optimize portfolio with advanced algorithm
optimized_portfolio = await sparse_optimization(
portfolio_symbols=uncorrelated["selected_assets"]["symbols"],
benchmark_symbol="SPY",
start_date="2023-01-01",
end_date="2024-01-01",
max_weight=0.15,
lambda_param=0.01
)
Statistical Analysis Workflow
# Cointegration analysis for pairs trading
cointegration_result = await test_cointegration(
symbol1="KO",
symbol2="PEP",
start_date="2023-01-01",
end_date="2024-01-01",
trend="c"
)
if cointegration_result["is_cointegrated"]:
print(f"✅ Cointegration detected (p-value: {cointegration_result['cointegration_pvalue']:.4f})")
# Analyze mean reversion opportunities
mean_reversion = await analyze_mean_reversion(
symbols=["KO", "PEP"],
start_date="2023-01-01",
end_date="2024-01-01",
lookback_period=20
)
Project and Backtest Management
# Create new algorithmic trading project
project = await create_project(
name="Mean_Reversion_Strategy_v2",
language="Py"
)
# Upload algorithm code
await create_file(
project_id=project["project"]["projectId"],
name="main.py",
content=algorithm_code
)
# Run backtest
backtest = await create_backtest(
project_id=project["project"]["projectId"],
compile_id="latest",
backtest_name="Mean_Reversion_Test_Run",
parameters={"lookback_period": 20, "threshold": 2.0}
)
# Analyze results
results = await read_backtest(
project_id=project["project"]["projectId"],
backtest_id=backtest["backtest"]["backtestId"]
)
📖 Comprehensive API Reference
🔐 Authentication Tools
Tool | Description | Key Parameters |
---|---|---|
configure_quantconnect_auth |
Set up API credentials | user_id , api_token , organization_id |
validate_quantconnect_auth |
Test credential validity | - |
get_auth_status |
Check authentication status | - |
test_quantconnect_api |
Test API connectivity | endpoint , method |
clear_quantconnect_auth |
Clear stored credentials | - |
📊 Project Management Tools
Tool | Description | Key Parameters |
---|---|---|
create_project |
Create new QuantConnect project | name , language , organization_id |
read_project |
Get project details or list all | project_id (optional) |
update_project |
Update project name/description | project_id , name , description |
📁 File Management Tools
Tool | Description | Key Parameters |
---|---|---|
create_file |
Create file in project | project_id , name , content |
read_file |
Read file(s) from project | project_id , name (optional) |
update_file_content |
Update file content | project_id , name , content |
update_file_name |
Rename file in project | project_id , old_file_name , new_name |
🧪 QuantBook Research Tools
Tool | Description | Key Parameters |
---|---|---|
initialize_quantbook |
Create new research instance | instance_name , organization_id , token |
list_quantbook_instances |
View all active instances | - |
get_quantbook_info |
Get instance details | instance_name |
remove_quantbook_instance |
Clean up instance | instance_name |
📈 Data Retrieval Tools
Tool | Description | Key Parameters |
---|---|---|
add_equity |
Add single equity security | ticker , resolution , instance_name |
add_multiple_equities |
Add multiple securities | tickers , resolution , instance_name |
get_history |
Get historical price data | symbols , start_date , end_date , resolution |
add_alternative_data |
Subscribe to alt data | data_type , symbol , instance_name |
get_alternative_data_history |
Get alt data history | data_type , symbols , start_date , end_date |
🔬 Statistical Analysis Tools
Tool | Description | Key Parameters |
---|---|---|
perform_pca_analysis |
Principal Component Analysis | symbols , start_date , end_date , n_components |
test_cointegration |
Engle-Granger cointegration test | symbol1 , symbol2 , start_date , end_date |
analyze_mean_reversion |
Mean reversion analysis | symbols , start_date , end_date , lookback_period |
calculate_correlation_matrix |
Asset correlation analysis | symbols , start_date , end_date |
💰 Portfolio Optimization Tools
Tool | Description | Key Parameters |
---|---|---|
sparse_optimization |
Advanced sparse optimization | portfolio_symbols , benchmark_symbol , optimization params |
calculate_portfolio_performance |
Performance metrics | symbols , weights , start_date , end_date |
optimize_equal_weight_portfolio |
Equal-weight optimization | symbols , start_date , end_date , rebalance_frequency |
🌐 Universe Selection Tools
Tool | Description | Key Parameters |
---|---|---|
get_etf_constituents |
Get ETF holdings | etf_ticker , date , instance_name |
add_etf_universe_securities |
Add all ETF constituents | etf_ticker , date , resolution |
select_uncorrelated_assets |
Find uncorrelated assets | symbols , num_assets , method |
screen_assets_by_criteria |
Multi-criteria screening | symbols , min_return , max_volatility , etc. |
🔥 Backtest Management Tools
Tool | Description | Key Parameters |
---|---|---|
create_backtest |
Create new backtest | project_id , compile_id , backtest_name |
read_backtest |
Get backtest results | project_id , backtest_id , chart |
read_backtest_chart |
Get chart data | project_id , backtest_id , name |
read_backtest_orders |
Get order history | project_id , backtest_id , start , end |
read_backtest_insights |
Get insights data | project_id , backtest_id , start , end |
🏗️ Architecture
quantconnect-mcp/ ├── 🎛️ main.py # Server entry point & configuration ├── 📊 src/ │ ├── 🖥️ server.py # FastMCP server core │ ├── 🔧 tools/ # Tool implementations │ │ ├── 🔐 auth_tools.py # Authentication management │ │ ├── 📁 project_tools.py # Project CRUD operations │ │ ├── 📄 file_tools.py # File management │ │ ├── 🧪 quantbook_tools.py # Research environment │ │ ├── 📈 data_tools.py # Data retrieval │ │ ├── 🔬 analysis_tools.py # Statistical analysis │ │ ├── 💰 portfolio_tools.py # Portfolio optimization │ │ ├── 🌐 universe_tools.py # Universe selection │ │ └── 📊 backtest_tools.py # Backtest management │ ├── 🔐 auth/ # Authentication system │ │ ├── __init__.py │ │ └── quantconnect_auth.py # Secure API authentication │ └── 📊 resources/ # System resources │ ├── __init__.py │ └── system_resources.py # Server monitoring ├── 🧪 tests/ # Comprehensive test suite │ ├── test_auth.py │ ├── test_server.py │ └── __init__.py ├── 📋 pyproject.toml # Project configuration └── 📖 README.md # This file
Core Design Principles
- 🏛️ Modular Architecture: Each tool category is cleanly separated for maintainability
- 🔒 Security First: SHA-256 authenticated API with secure credential management
- ⚡ Async Performance: Non-blocking operations for maximum throughput
- 🧪 Type Safety: Full type annotations with mypy verification
- 🔧 Extensible: Plugin-based architecture for easy feature additions
🔧 Advanced Configuration
Transport Options
# STDIO (default) - Best for MCP clients
python main.py
# HTTP Server - Best for web integrations
MCP_TRANSPORT=streamable-http MCP_HOST=0.0.0.0 MCP_PORT=8000 python main.py
# Custom path for HTTP
MCP_PATH=/api/v1/mcp python main.py
Environment Variables
Variable | Description | Default | Example |
---|---|---|---|
MCP_TRANSPORT |
Transport method | stdio |
streamable-http |
MCP_HOST |
Server host | 127.0.0.1 |
0.0.0.0 |
MCP_PORT |
Server port | 8000 |
3000 |
MCP_PATH |
HTTP endpoint path | /mcp |
/api/v1/mcp |
LOG_LEVEL |
Logging verbosity | INFO |
DEBUG |
System Resources
Monitor server performance and status:
# System information
system_info = await get_resource("resource://system/info")
# Server status and active instances
server_status = await get_resource("resource://quantconnect/server/status")
# Available tools summary
tools_summary = await get_resource("resource://quantconnect/tools/summary")
# Performance metrics
performance = await get_resource("resource://quantconnect/performance/metrics")
# Top processes by CPU usage
top_processes = await get_resource("resource://system/processes/10")
🧪 Testing
Run the Test Suite
# Run all tests
pytest tests/ -v
# Run with coverage
pytest tests/ --cov=src --cov-report=html
# Run specific test category
pytest tests/test_auth.py -v
# Run tests in parallel
pytest tests/ -n auto
Manual Testing
# Test authentication
python -c "
import asyncio
from src.auth import validate_authentication
print(asyncio.run(validate_authentication()))
"
# Test server startup
python main.py --help
🤝 Contributing
We welcome contributions! This project follows the highest Python development standards:
Development Setup
# Fork and clone the repository
git clone https://github.com/your-username/quantconnect-mcp
cd quantconnect-mcp
# Install development dependencies
uv sync --dev
# Install pre-commit hooks
pre-commit install
Code Quality Standards
- ✅ Type Hints: All functions must have complete type annotations
- ✅ Documentation: Comprehensive docstrings for all public functions
- ✅ Testing: Minimum 90% test coverage required
- ✅ Formatting: Black code formatting enforced
- ✅ Linting: Ruff linting with zero warnings
- ✅ Type Checking: mypy verification required
Development Workflow
# Create feature branch
git checkout -b feature/amazing-new-feature
# Make changes and run quality checks
ruff check src/
black src/ tests/
mypy src/
# Run tests
pytest tests/ --cov=src
# Commit with conventional commits
git commit -m "feat: add amazing new feature"
# Push and create pull request
git push origin feature/amazing-new-feature
Pull Request Guidelines
- 📝 Clear Description: Explain what and why, not just how
- 🧪 Test Coverage: Include tests for all new functionality
- 📖 Documentation: Update README and docstrings as needed
- 🔍 Code Review: Address all review feedback
- ✅ CI Passing: All automated checks must pass
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
Built with ❤️ for the algorithmic trading community