- Explore MCP Servers
- universal-public-data-mcp-server
Universal Public Data Mcp Server
What is Universal Public Data Mcp Server
The universal-public-data-mcp-server is a fully functional Model Context Protocol (MCP) server that provides unified access to a variety of data across financial, government, scientific, news, geographic, and technology categories, integrating real API functionalities.
Use cases
Use cases include financial data analysis, government data reporting, scientific research data aggregation, news data retrieval, geographic data mapping, and technology trend analysis, enabling users to leverage diverse data for informed decision-making.
How to use
To use the universal-public-data-mcp-server, clone the repository from GitHub, set up a virtual environment, install the necessary dependencies, and configure it within Cursor IDE by adding the appropriate settings to access the server.
Key features
Key features include full compliance with the MCP protocol, integration with Cursor IDE, fast startup time, 21 comprehensive tools across 6 data categories, robust error handling, and compatibility with Windows 10/11.
Where to use
This server can be used in various fields such as finance, government, scientific research, news media, geographic information systems, and technology development, providing essential data access for applications in these areas.
Overview
What is Universal Public Data Mcp Server
The universal-public-data-mcp-server is a fully functional Model Context Protocol (MCP) server that provides unified access to a variety of data across financial, government, scientific, news, geographic, and technology categories, integrating real API functionalities.
Use cases
Use cases include financial data analysis, government data reporting, scientific research data aggregation, news data retrieval, geographic data mapping, and technology trend analysis, enabling users to leverage diverse data for informed decision-making.
How to use
To use the universal-public-data-mcp-server, clone the repository from GitHub, set up a virtual environment, install the necessary dependencies, and configure it within Cursor IDE by adding the appropriate settings to access the server.
Key features
Key features include full compliance with the MCP protocol, integration with Cursor IDE, fast startup time, 21 comprehensive tools across 6 data categories, robust error handling, and compatibility with Windows 10/11.
Where to use
This server can be used in various fields such as finance, government, scientific research, news media, geographic information systems, and technology development, providing essential data access for applications in these areas.
Content
🎯 Universal Public Data MCP Server
A fully functional Model Context Protocol (MCP) server providing unified access to 21 powerful tools across 6 data categories. Now working perfectly with Cursor IDE and other MCP clients!
✅ Current Status: FULLY WORKING
The server has been extensively tested and is production-ready with:
- ✅ Full MCP Protocol Compliance (2024-11-05)
- ✅ Cursor IDE Integration (Green dot ✅)
- ✅ Fast Startup (~2.5 seconds, 75% improvement)
- ✅ 21 Comprehensive Tools across 6 categories
- ✅ Robust Error Handling with graceful fallbacks
- ✅ Windows 10/11 Compatibility with proper UTF-8 encoding
🚀 Quick Start for Cursor IDE
1. Installation
git clone https://github.com/inamdarmihir/universal-public-data-mcp-server.git
cd universal-public-data-mcp-server
# Create virtual environment (recommended)
python -m venv venv
venv\Scripts\activate # Windows
# Install dependencies
pip install -r requirements.txt
2. Configure Cursor IDE
Add this to your Cursor MCP settings:
{
"mcpServers": {
"universal-public-data": {
"command": "python",
"args": [
"C:\\path\\to\\your\\universal-public-data-mcp-server\\src\\server.py"
],
"cwd": "C:\\path\\to\\your\\universal-public-data-mcp-server",
"env": {
"PYTHONUNBUFFERED": "1",
"PYTHONPATH": "C:\\path\\to\\your\\universal-public-data-mcp-server"
}
}
}
}
3. Expected Result
- Green dot ✅ in Cursor IDE
- Access to 21 powerful data tools
- Fast, reliable performance
🔧 Server Capabilities
📊 Government Data (3 tools)
get_census_data
- US Census demographic dataget_economic_indicators
- Federal Reserve economic data (FRED)search_sec_filings
- SEC company filings search
🔬 Scientific Data (3 tools)
get_nasa_data
- NASA space and earth science datasearch_research_papers
- PubMed and ArXiv research papersget_climate_data
- NOAA climate and weather data
💰 Financial Data (3 tools)
get_stock_data
- Real-time stock data and financial metricsget_crypto_data
- Cryptocurrency prices and market dataget_exchange_rates
- Current currency exchange rates
📰 News & Media (3 tools)
get_breaking_news
- Latest breaking news from multiple sourcessearch_news
- Search news articles by topic/keywordanalyze_media_sentiment
- News sentiment analysis
🌍 Geographic & Environmental (3 tools)
get_weather_data
- Current weather and forecastsget_air_quality
- Air quality measurements by locationget_disaster_alerts
- Natural disaster alerts and warnings
💻 Technology (3 tools)
get_github_trends
- Trending GitHub repositoriesget_domain_info
- WHOIS and domain informationanalyze_tech_trends
- Technology adoption metrics
🖥️ System Monitoring (3 tools)
get_system_status
- Server health and performance metricsget_api_metrics
- API performance statisticsget_cache_stats
- Cache performance and hit ratios
⚡ Performance Features
🚀 Fast Startup (75% Improvement)
- ~2.5 seconds startup time (down from 10+ seconds)
- Lazy loading - adapters initialize only when first used
- Optimized imports - deferred dependency loading
🧠 Smart Caching System
- In-memory caching with configurable TTL
- Redis support (optional) for distributed caching
- Cache hit ratio tracking for performance monitoring
🛡️ Enterprise-Grade Reliability
- Rate limiting protection
- Circuit breakers for API failures
- Graceful fallbacks when services are unavailable
- Comprehensive logging (stderr only for MCP compatibility)
🔧 Technical Implementation
Issues Resolved ✅
- Redis Compatibility - Fixed aioredis Python 3.13 issues
- Slow Startup Performance - Implemented lazy loading (75% faster)
- Configuration File Errors - Corrected all file paths
- Unicode Encoding Issues - Fixed Windows console encoding
- MCP Communication Problems - Cleaned stdout for JSON-RPC
- Logging Conflicts - Moved all logs to stderr
MCP Protocol Compliance
- ✅ JSON-RPC over stdio communication
- ✅ Protocol version 2024-11-05 support
- ✅ Tools listing and execution
- ✅ Proper error handling and responses
- ✅ Client capability negotiation
Test Results
🎯 FINAL CURSOR MCP CONNECTION TEST ====================================================================== ✅ Initialize successful ✅ Initialized notification sent ✅ Tools list received: 21 tools available ✅ Tool call successful 🎉 ALL TESTS PASSED!
📂 Project Structure
universal-public-data-mcp-server/ ├── src/ │ ├── server.py # Main MCP server (WORKING ✅) │ ├── adapters/ # Data source adapters │ │ ├── government.py # Government APIs │ │ ├── scientific.py # Scientific APIs │ │ ├── financial.py # Financial APIs │ │ ├── news.py # News APIs │ │ ├── geographic.py # Geographic APIs │ │ └── technology.py # Technology APIs │ └── core/ │ ├── config.py # Configuration (FIXED ✅) │ ├── cache.py # Caching system │ ├── rate_limiter.py # Rate limiting │ └── monitoring.py # Performance monitoring ├── cursor_mcp_config.json # Cursor configuration (READY ✅) ├── requirements.txt # Dependencies ├── MCP_SERVER_SETUP_FINAL.md # Comprehensive setup guide └── tests/ # Comprehensive test suite
🔍 Troubleshooting
Red Dot ❌ in Cursor IDE
- Check Python Path: Ensure
python
command works in terminal - Verify File Paths: Update paths in
cursor_mcp_config.json
to your actual location - Virtual Environment: Activate if using one, or use full Python path
- Check Logs: Look at Cursor’s MCP logs for specific error messages
Yellow Dot ⚠️ in Cursor IDE
- Server is starting up - wait a moment for green dot ✅
- Normal during first initialization (~2.5 seconds)
Performance Optimization
# Optional: Add API keys for higher rate limits
export NASA_API_KEY="your_key_here"
export GITHUB_API_KEY="your_key_here"
🚀 Advanced Configuration
High-Performance Setup
{
"cache": {
"enabled": true,
"redis_enabled": true,
"redis_url": "redis://localhost:6379/0",
"default_ttl": 3600
},
"rate_limit": {
"enabled": true,
"requests_per_minute": 300,
"burst_limit": 50
}
}
Development Mode
{
"server": {
"debug": true,
"log_level": "DEBUG"
},
"cache": {
"enabled": false
},
"rate_limit": {
"enabled": false
}
}
🧪 Testing
Verify Installation
# Test server startup
python src/server.py
# Run comprehensive tests
python final_cursor_test.py
# Test individual components
python test_minimal_mcp.py
Expected Test Output
🎯 ✅ MCP SERVER IS READY FOR CURSOR! You can now use the cursor_mcp_config.json file in Cursor Expected behavior: Green dot ✅ in Cursor IDE
📊 Success Metrics
Metric | Value | Status |
---|---|---|
Startup Time | ~2.5 seconds | ✅ Optimized |
Tool Count | 21 tools | ✅ Complete |
API Categories | 6 categories | ✅ Comprehensive |
Response Time | Sub-second | ✅ Fast |
Memory Usage | Optimized | ✅ Efficient |
Windows Support | Full | ✅ Compatible |
MCP Compliance | 100% | ✅ Standard |
🏆 Production Ready Features
- ✅ Full MCP Protocol Compliance
- ✅ Comprehensive Error Handling
- ✅ Performance Optimizations
- ✅ Windows 10/11 Compatibility
- ✅ Cursor IDE Integration
- ✅ Extensive Testing Coverage
- ✅ Enterprise-Grade Monitoring
- ✅ Scalable Architecture
🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Make your changes
- Add tests for new functionality
- Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🔗 Links
- Repository: GitHub
- Issues: Report Issues
- MCP Specification: Official Docs
- Setup Guide: MCP_SERVER_SETUP_FINAL.md
🎯 Ready to revolutionize your data access in Cursor IDE! 🚀
Last updated: Working perfectly with Cursor IDE, all tests passing, production-ready deployment.